首页> 美国卫生研究院文献>other >Hypoxia activates NADPH oxidase to increase ROSi and Ca2+i through mitochondrial ROS–PKCε signaling axis in pulmonary artery smooth muscle cells
【2h】

Hypoxia activates NADPH oxidase to increase ROSi and Ca2+i through mitochondrial ROS–PKCε signaling axis in pulmonary artery smooth muscle cells

机译:缺氧激活NADPH氧化酶通过肺动脉平滑肌细胞中的线粒体ROS–PKCε信号轴增加ROS i和Ca2 + i

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The importance of NADPH oxidase (Nox) in hypoxic responses in hypoxia-sensing cells including pulmonary artery smooth muscle cells (PASMCs) remains uncertain. In this study, using Western blot analysis we found that the major Nox subunits Nox1, Nox4, p22phox, p47phox, and p67phox were equivalently expressed in mouse pulmonary and systemic (mesenteric) arteries. However, acute hypoxia significantly increased Nox activity and translocation of p47phox protein to the plasma membrane in pulmonary, but not mesenteric arteries. The Nox inhibitor apocynin and p47phox gene deletion attenuated hypoxic increase in intracellular reactive oxygen species and Ca2+ concentration ([ROS]i and [Ca2+]i) as well as contraction in mouse PASMCs, and abolished hypoxic activation of Nox in pulmonary arteries. The conventionalovel protein kinase C (PKC) inhibitor chelerythrine, specific PKCε translocation peptide inhibitor and PKCε gene deletion, but not the conventional PKC inhibitor GÖ6976, prevented hypoxic increase in Nox activity in pulmonary arteries and in [ROS]i in PASMCs. The PKC activator phorbol-12-myristate-13-acetate could increase Nox activity in pulmonary and mesenteric arteries. Inhibition of mitochondrial ROS generation with rotenone or myxothiazol prevented hypoxic activation of Nox. Glutathione peroxidase-1 (Gpx1) gene overexpression to enhance H2O2 removal significantly inhibited hypoxic activation of Nox, whereas Gpx1 gene deletion had an opposite effect. Exogenous H2O2 increased Nox activity in pulmonary and mesenteric arteries. These findings suggest that acute hypoxia may distinctively activate Nox to increase [ROS]i through mitochondrial ROS–PKCε signaling axis, providing a positive feedback mechanism to contribute to hypoxic increase in [ROS]i and [Ca2+]i as well as contraction in PASMCs.
机译:NADPH氧化酶(Nox)在低氧敏感细胞(包括肺动脉平滑肌细胞(PASMCs))的低氧反应中的重要性仍不确定。在这项研究中,通过蛋白质印迹分析,我们发现主要的Nox亚基Nox1,Nox4,p22 phox ,p47 phox 和p67 phox 是在小鼠肺和全身(肠系膜)动脉中均等表达。然而,急性缺氧显着增加了Nox活性和p47 phox 蛋白在肺部而不是肠系膜动脉中的质膜转运。 Nox抑制剂载脂蛋白和p47 phox 基因的缺失减弱了细胞内活性氧和Ca 2 + 浓度([ROS] i和[Ca 2+ < / sup>] i)以及小鼠PASMC的收缩,并消除了肺动脉Nox的低氧激活。常规/新型蛋白激酶C(PKC)抑制剂白屈菜红碱,特异性PKCε易位肽抑制剂和PKCε基因缺失,但常规PKC抑制剂GÖ6976则不能防止PASMCs的肺动脉和[ROS] i NOx活性低氧增加。 PKC激活蛋白phorbol-12-肉豆蔻酸酯-13-乙酸酯可以增加肺动脉和肠系膜动脉的Nox活性。鱼藤酮或甲噻唑对线粒体ROS的抑制作用抑制了NOx的低氧激活。谷胱甘肽过氧化物酶-1(Gpx1)基因过度表达以增强H2O2去除显着抑制了Nox的低氧激活,而Gpx1基因缺失则具有相反的作用。外源H2O2增加了肺和肠系膜动脉的Nox活性。这些发现表明,急性缺氧可能通过线粒体ROS–PKCε信号转导轴显着激活Nox,从而增加[ROS] i,从而为[ROS] i和[Ca 2 + ] i以及PASMC的收缩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号