首页> 美国卫生研究院文献>other >Ultrafast Excited-State Dynamics of Nanoscale Near-Infrared Emissive Polymersomes
【2h】

Ultrafast Excited-State Dynamics of Nanoscale Near-Infrared Emissive Polymersomes

机译:纳米级近红外发射聚合物囊泡的超快激发态动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Formed through cooperative self-assembly of amphiphilic diblock copolymers and electronically conjugated porphyrinic near-infrared (NIR) fluorophores (NIRFs), NIR-emissive polymersomes (50 nm to 50 μm diameter polymer vesicles) define a family of organic-based, soft-matter structures that are ideally suited for deep-tissue optical imaging and sensitive diagnostic applications. Here, we describe magic angle and polarized pump–probe spectroscopic experiments that: (i) probe polymersome structure and NIRF organization and (ii) connect emitter structural properties and NIRF loading with vesicle emissive output at the nanoscale. Within polymersome membrane environments, long polymer chains constrain ethyne-bridged oligo(porphinato)zinc(II) based supermolecular fluorophore (>PZnn) conformeric populations and disperse these >PZnn species within the hydrophobic bilayer. Ultrafast excited-state transient absorption and anisotropy dynamical studies of NIR-emissive polymersomes, in which the >PZnn fluorophore loading per nanoscale vesicle is varied between 0.1–10 mol %, enable the exploration of concentration-dependent mechanisms for nonradiative excited-state decay. These experiments correlate fluorophore structure with its gross spatial arrangement within specific nanodomains of these nanoparticles and reveal how compartmentalization of fluorophores within reduced effective dispersion volumes impacts bulk photophysical properties. As these factors play key roles in determining the energy transfer dynamics between dispersed fluorophores, this work underscores that strategies that modulate fluorophore and polymer structure to optimize dispersion volume in bilayered nanoscale vesicular environments will further enhance the emissive properties of these sensitive nanoscale probes.
机译:通过两亲性二嵌段共聚物和电子共轭卟啉近红外(NIR)荧光团(NIRF)的协同自组装形成,NIR发射聚合物囊泡(直径50 nm至50μm的聚合物囊泡)定义了一系列基于有机物的软物质非常适合深组织光学成像和敏感诊断应用的结构。在这里,我们描述了魔角和极化泵浦-探针光谱实验,这些实验是:(i)探测聚合物小体结构和NIRF组织,以及(ii)将发射器的结构特性和NIRF负载与纳米级的囊泡发射输出连接起来。在聚合物膜环境中,长聚合物链约束基于乙炔桥的低聚(卟啉)锌(II)超分子荧光团(> PZnn )的构象种群,并将这些> PZnn 物种分散在疏水性内双层。近红外发射聚合物小体的超快激发态瞬态吸收和各向异性动力学研究,其中每个纳米囊泡的> PZnn 荧光团负载量在0.1-10 mol%之间变化,可以探索浓度依赖的机制非辐射激发态衰减。这些实验将荧光团结构与其在这些纳米粒子的特定纳米域内的总体空间布置相关联,并揭示了荧光团在减少的有效分散体体积内的分隔如何影响整体光物理性质。由于这些因素在确定分散的荧光团之间的能量转移动力学中起关键作用,因此这项工作强调了调节荧光团和聚合物结构以优化双层纳米级囊泡环境中分散体体积的策略将进一步增强这些敏感的纳米级探针的发射性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号