首页> 美国卫生研究院文献>other >The Minimized Dead-End Elimination Criterion and Its Application to Protein Redesign in a Hybrid Scoring and Search Algorithm for Computing Partition Functions over Molecular Ensembles
【2h】

The Minimized Dead-End Elimination Criterion and Its Application to Protein Redesign in a Hybrid Scoring and Search Algorithm for Computing Partition Functions over Molecular Ensembles

机译:最小末端消除标准及其在蛋白质重新设计中的应用-基于分子积分计算分区功能的混合评分和搜索算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the main challenges for protein redesign is the efficient evaluation of a combinatorial number of candidate structures. The modeling of protein flexibility, typically by using a rotamer library of commonly-observed low-energy side-chain conformations, further increases the complexity of the redesign problem. A dominant algorithm for protein redesign is Dead-End Elimination (DEE), which prunes the majority of candidate conformations by eliminating rigid rotamers that provably are not part of the Global Minimum Energy Conformation (GMEC). The identified GMEC consists of rigid rotamers (i.e., rotamers that have not been energy-minimized) and is thus referred to as the rigid-GMEC. As a post-processing step, the conformations that survive DEE may be energy-minimized. When energy minimization is performed after pruning with DEE, the combined protein design process becomes heuristic, and is no longer provably accurate: a conformation that is pruned using rigid-rotamer energies may subsequently minimize to a lower energy than the rigid-GMEC. That is, the rigid-GMEC and the conformation with the lowest energy among all energy-minimized conformations (the minimized-GMEC) are likely to be different. While the traditional DEE algorithm succeeds in not pruning rotamers that are part of the rigid-GMEC, it makes no guarantees regarding the identification of the minimized-GMEC. In this paper we derive a novel, provable, and efficient DEE-like algorithm, called minimized-DEE (MinDEE), that guarantees that rotamers belonging to the minimized-GMEC will not be pruned, while still pruning a combinatorial number of conformations. We show that MinDEE is useful not only in identifying the minimized-GMEC, but also as a filter in an ensemble-based scoring and search algorithm for protein redesign that exploits energy-minimized conformations. We compare our results both to our previous computational predictions of protein designs and to biological activity assays of predicted protein mutants. Our provable and efficient minimized-DEE algorithm is applicable in protein redesign, protein-ligand binding prediction, and computer-aided drug design.
机译:蛋白质重新设计的主要挑战之一是有效评估候选结构的组合数量。通常通过使用通常观察到的低能侧链构象的旋转异构体库对蛋白质的灵活性进行建模,这进一步增加了重新设计问题的复杂性。蛋白质重新设计的一种主要算法是“末端消除法”(DEE-End Elimination(DEE)),该方法通过消除被证明不属于全球最低能量构象(GMEC)的刚性旋转异构体来修剪大多数候选构象。所标识的GMEC由刚性旋转器(即尚未经过能量最小化的旋转器)组成,因此被称为刚性GMEC。作为后处理步骤,可以最小化在DEE中生存的构象。当用DEE修剪后进行能量最小化时,组合的蛋白质设计过程将变得启发式,并且不再证明是准确的:使用刚性旋转子能量修剪的构象随后可能会最小化到比刚性GMEC更低的能量。即,刚性GMEC和所有能量最小化构型(最小化GMEC)中具有最低能量的构型可能是不同的。尽管传统的DEE算法成功地修剪了刚性GMEC的旋转异构体,但它并不能保证最小化GMEC的识别。在本文中,我们推导了一种新颖,可验证且有效的类似于DEE的算法,称为最小化DEE(MinDEE),该算法可确保在修剪组合构型数的同时,不修剪属于最小化GMEC的旋转子。我们显示MinDEE不仅在识别最小化的GMEC中有用,而且在基于集合的评分和搜索算法中作为筛选器,用于蛋白质重新设计中利用了能量最小的构象。我们将我们的结果与我们先前对蛋白质设计的计算预测以及预测的蛋白质突变体的生物活性分析进行了比较。我们可证明且有效的最小化DEE算法适用于蛋白质重新设计,蛋白质-配体结合预测和计算机辅助药物设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号