首页> 美国卫生研究院文献>other >Dynamic adsorption properties of n-alkyl glucopyranosides determine their ability to inhibit cytolysis mediated by acoustic cavitation
【2h】

Dynamic adsorption properties of n-alkyl glucopyranosides determine their ability to inhibit cytolysis mediated by acoustic cavitation

机译:n-烷基吡喃葡萄糖苷的动态吸附特性决定了它们抑制声空化介导的细胞溶解的能力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl-,heptyl- and octyl-) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al., Free Radic. Biol. Med. >2005, 39, 1539–1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on adsorption of n-alkyl glucopyranosides to the gas/solution interface of cavitation bubbles and/or the lipid membrane of cells. The current study tests the hypothesis that “sonoprotection” (i.e., protection of cells from ultrasound-induced cytolysis) in vitro depends on the adsorption of glucopyranosides at the gas/solution interface of cavitation bubbles. To test this hypothesis, the effect of ultrasound frequency (from 42 kHz to 1 MHz) on the ability of a homologous series of n-alkyl glucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. It is expected that ultrasound frequency will affect sonoprotection ability, since the nature of the cavitation bubble field will change. This will affect the relative importance of the possible mechanisms for ultrasound-induced cytolysis. Additionally, ultrasound frequency will affect the lifetime and the rate of change of the surface area of cavitation bubbles, hence the dynamically controlled adsorption of glucopyranosides to their surface. The data support the hypothesis that sonoprotection efficiency depends on the ability of glucopyranosides to adsorb at the gas/solution interface of cavitation bubbles.
机译:当暴露于高于超声空化阈值的超声时,人类白血病(HL-60)细胞的悬浮液容易发生细胞溶解。但是,正烷基吡喃葡萄糖苷(己基,庚基和辛基)完全抑制超声诱导的(1057 kHz)细胞溶解(Sostaric等,Free Radic。Biol。Med。> 2005 ,39) ,1539–1548)。通过吡喃葡萄糖苷的正烷基链长度来确定免受超声诱导的细胞溶解的保护功效,表明保护功效取决于正烷基吡喃葡萄糖苷对空化气泡和/或脂质的脂膜的气体/溶液界面的吸附。细胞。当前的研究检验了这样的假说,即体外的“超声保护”(即保护细胞免受超声诱导的细胞溶解作用)取决于空化气泡在气体/溶液界面上的吡喃葡萄糖苷的吸附。为了检验该假设,研究了超声频率(从42 kHz到1 MHz)对一系列同源的正烷基吡喃葡萄糖苷保护细胞免受超声诱导的细胞溶解作用的能力的影响。可以预料的是,超声频率会影响声波防护能力,因为空化气泡场的性质将会改变。这将影响超声诱导细胞溶解的可能机制的相对重要性。另外,超声频率将影响空化气泡的寿命和表面积变化率,因此动态控制了吡喃葡萄糖苷在其表面的吸附。数据支持这样的假说,即声音保护效率取决于吡喃葡萄糖苷在空化气泡的气体/溶液界面吸附的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号