首页> 美国卫生研究院文献>other >Coupling of Waveguide and Resonator by Inductive and Capacitive Irises for EPR Spectroscopy
【2h】

Coupling of Waveguide and Resonator by Inductive and Capacitive Irises for EPR Spectroscopy

机译:EPR光谱通过电感和电容上升耦合波导和谐振器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An analytic circuit model for slot coupling from a waveguide to a loop-gap resonator (LGR) in a context of electron paramagnetic resonance (EPR) spectroscopy is presented. The physical dimensions of the waveguide, iris, LGR, and aqueous sample are transformed into circuit values of inductance, capacitance, and resistance. These values are used in a solution of circuit equations that results in a prediction of the rf currents, magnitude and phase, frequency, and magnetic and electric stored energies near critical coupling. The circuit geometry reflects magnetic flux conservation between the iris and LGR as well as modification of the outer loop LGR currents by the iris. Unlike conventional models, coupling is not explicitly based on a mutual inductance between the iris and LGR. Instead, the conducting wall high frequency rf boundary condition is used to define surface currents, regions, and circuit topology with lumped-circuit values of self-inductance, capacitance, and resistance. Match is produced by a combination of self-inductive and capacitive circuit coupling. Two conditions must be met to achieve match. First, the equivalent resistance of the LGR as seen by the iris must be transformed into the waveguide characteristic impedance. This transformation is met at a particular frequency relative to the natural LGR resonance frequency. The frequency shift magnitude is largely determined by the LGR properties, weakly dependent on iris length and placement, and independent of other iris dimensions. The second condition for match is that the iris reactance at this frequency shift must cancel the residual reactance of the LGR. This second condition is sensitive to the iris dimensions. If both conditions are not simultaneously satisfied, overcoupling or undercoupling results. A slotted iris of equal length to the size of the large dimension of the waveguide is found to have many properties opposite to a conventional iris of shorter length. Notably, the magnetic field near the iris tends to reinforce rather than oppose the magnetic field in the resonator. The long iris improves the LGR EPR performance by providing increased rf magnetic field homogeneity at the sample, higher signal, and reduced total frequency shift since the shifts due to sample and iris tend to cancel. Investigations reveal that the first match condition can be adjusted by LGR dimensional changes and such adjustment can eliminate the frequency shift. Results are consistent with Ansoft High Frequency Structure Simulator (Version 10.1, Ansoft Corporation, Pittsburgh, PA) simulations and can be extended to cavity resonators.
机译:提出了一种在电子顺磁共振(EPR)光谱学中用于从波导到环隙谐振器(LGR)的缝隙耦合的解析电路模型。波导,虹膜,LGR和水性样品的物理尺寸被转换为电感,电容和电阻的电路值。这些值用于解决电路方程式,从而可以预测射频电流,幅度和相位,频率以及接近临界耦合的磁储能。电路的几何形状反映了虹膜和LGR之间的磁通守恒,以及虹膜对外环LGR电流的修改。与传统模型不同,耦合不是明确基于虹膜和LGR之间的互感。相反,导电壁高频rf边界条件用于定义具有自感,电容和电阻的集总电路值的表面电流,区域和电路拓扑。匹配是由自感和电容电路耦合共同产生的。必须满足两个条件才能实现匹配。首先,必须将虹膜看到的LGR的等效电阻转换为波导特性阻抗。在相对于自然LGR谐振频率的特定频率下可以满足此变换。频移幅度主要由LGR属性确定,在较小程度上取决于光圈长度和位置,并且与其他光圈尺寸无关。匹配的第二个条件是,在该频移处的虹膜电抗必须抵消LGR的残留电抗。第二个条件对光圈尺寸敏感。如果两个条件不能同时满足,则会导致过度耦合或欠耦合。发现与波导的大尺寸的尺寸长度相等的带槽虹膜具有许多与较短长度的传统虹膜相反的特性。值得注意的是,虹膜附近的磁场倾向于增强而不是抵抗谐振器中的磁场。长虹膜通过在样品处提供增强的rf磁场均匀性,更高的信号并减少总频率偏移,从而改善了LGR EPR性能,因为由于样品和虹膜引起的偏移趋于抵消。研究表明,可以通过LGR尺寸变化来调整第一个匹配条件,并且这种调整可以消除频率偏移。结果与Ansoft高频结构仿真器(10.1版,Ansoft Corporation,Pittsburgh,PA)仿真一致,并且可以扩展到空腔谐振器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号