首页> 美国卫生研究院文献>other >Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles
【2h】

Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles

机译:近红外荧光聚合物纳米粒子的药代动力学和生物分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There has been increased interest in the use of polymeric nanoparticles as carriers for near-infrared (NIR) fluorescence dyes for cancer diagnosis. However, efficient delivery of nanoparticles to the tumors after systemic administration is limited by various biobarriers. In this study, we investigated the pharmacokinetics, biodistribution, and tumor uptake of sub-nanometer sized polymeric nanoparticles (<100 nm in diameter) coated with polyethylene glycol in tumor-bearing mice. To facility our studies, these particles were labeled with gamma emitter indium-111. We found that two NIRF nanoparticles having the same size (~20 nm) and chemical composition but different structures (i.e., hydrogel vs. core-shell nanolatex), or the same core-shell nanolatex particles with different sizes (20, 30, and 60 nm), had different blood circulation times, biodistribution, and tumor uptake. Interestingly, the tumor uptake of the nanolatex particles correlated well with their blood residence times (R2 = 0.95), but similar correlations were not found between nanogel and nanolatex particles (R2 = 0.05). These results suggest that both the blood circulation time and the extent of hydration of the nanoparticles play an important role in the tumor uptake of nanoparticles. Prolonged blood circulation of these NIRF nanoparticles allowed clear visualization of tumors with γ-scintigraphy and optical imaging after intravenous administration. A better understanding with regard to how the characteristics of nanoparticles influence their in vivo behavior is an important step towards designing NIRF nanoparticles suitable for molecular imaging applications and for efficient tumor delivery.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号