首页> 美国卫生研究院文献>other >Water Molecule Contributions to Proton Spin-Lattice Relaxation in Rotationally Immobilized Proteins
【2h】

Water Molecule Contributions to Proton Spin-Lattice Relaxation in Rotationally Immobilized Proteins

机译:在旋转固定的蛋白质中对质子旋转晶格松弛的水分子贡献

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spin-lattice relaxation rates of protein and water protons in dry and hydrated immobilized bovine serum albumin were measured in the range of 1H Larmor frequency from 10 kHz to 30 MHz at temperatures from 154 to 302 K. The water proton spin-lattice relaxation reports on that of protein protons, which causes the characteristic power law dependence on the magnetic field strength. Isotope substitution of deuterium for hydrogen in water and studies at different temperatures expose three classes of water molecule dynamics that contribute to the spin-lattice relaxation dispersion profile. At 185 K, a water 1H relaxation contribution derives from reorientation of protein-bound molecules that are dynamically uncoupled from the protein backbone and is characterized by a Lorentzian function. Bound water molecule motions that can be dynamically uncoupled or coupled to the protein fluctuations make dominant contributions at higher temperatures as well. Surface water translational diffusion that is magnetically two-dimensional makes relaxation contributions at frequencies above 10 MHz. It is shown using isotope substitution that the exponent of the power law of the water signal in hydrated immobilized protein systems is the same as that for protons in lyophilized proteins over four orders of magnitude in the Larmor frequency, which implies that changes in the protein structure associated with hydration do not affect the 1H spin relaxation.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号