首页> 美国卫生研究院文献>other >Mu opioid receptor modulation of somatodendritic dopamine overflow: GABA and glutamatergic mechanisms
【2h】

Mu opioid receptor modulation of somatodendritic dopamine overflow: GABA and glutamatergic mechanisms

机译:莫阿片类药物调节躯体脱霉素多巴胺溢出:GABA和谷氨酸机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mu opioid receptor (MOR) regulation of somatodendritic dopamine neurotransmission in the ventral tegmental area (VTA) was investigated using conventional microdialysis in freely moving rats and mice. Reverse dialysis of the MOR agonist, DAMGO (50, 100 μM), into the VTA of rats produced a concentration-dependent increase in dialysate DA concentrations. Basal dopamine overflow in the VTA was unaltered in mice lacking the MOR gene. However, basal GABA overflow in these animals was significantly increased, while glutamate overflow was decreased. Intra-VTA perfusion of DAMGO to wildtype (WT) mice increased dopamine overflow. GABA concentrations were decreased whereas glutamate concentrations in the VTA were unaltered. Consistent with the loss of MOR, no effect of DAMGO was observed in MOR knockout (KO) mice.These data provide the first direct demonstration of tonically active MOR systems in the VTA that regulate basal glutamatergic and GABAergic neurotransmission in this region. We hypothesize that increased GABAergic neurotransmission following constitutive deletion of MOR is due to the elimination of a tonic inhibitory influence of MOR on GABA neurons in the VTA, whereas decreased glutamatergic neurotransmission in MOR KO mice is a consequence of intensified GABA tone on glutamatergic neurons and/or terminals. As a consequence, somatodendritic dopamine release is unaltered. Furthermore, MOR KO exhibit no positive correlation between basal dopamine levels and the glutamate/GABA ratio observed in WT animals.Together our findings indicate a critical role of VTA MOR in maintaining an intricate balance between excitatory and inhibitory inputs to dopaminergic neurons.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号