首页> 美国卫生研究院文献>other >POLYCHLORINATED BIPHENYL (PCB)-INDUCED OXIDATIVE STRESS AND CYTOTOXICITY CAN BE MITIGATED BY ANTIOXIDANTS FOLLOWING EXPOSURE
【2h】

POLYCHLORINATED BIPHENYL (PCB)-INDUCED OXIDATIVE STRESS AND CYTOTOXICITY CAN BE MITIGATED BY ANTIOXIDANTS FOLLOWING EXPOSURE

机译:抗氧化剂暴露后可以减轻聚氯氯联苯(PCB)诱导的氧化应激和细胞毒性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

PCBs and PCB metabolites have been suggested to cause cytotoxicity by inducing oxidative stress but the effectiveness of antioxidant intervention following exposure is not established. Exponentially growing MCF-10A human breast and RWPE-1 human prostate epithelial cells continuously exposed for 5 days to 3 μM PCBs [Aroclor 1254, PCB153, and the 2-(4-chlorophenyl)-1,4-benzoquinone metabolite of PCB3 (4ClBQ)] were found to exhibit growth inhibition and clonogenic cell killing, with 4ClBQ having the most pronounced effects. These PCBs were also found to increase steady-state levels intracellular O2·− and H2O2 (as determined by dihydroethidium, MitoSOXred and 5-(and-6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate oxidation). These PCBs also caused 1.5- to 5.0-fold increases in MnSOD activity in MCF-10A cells and 2.5- to 5-fold increases in CuZnSOD activity in RWPE-1 cells. Measurement of MitoSOXred oxidation with confocal microscopy coupled with co-localization of MitoTracker green in MCF-10A and RWPE-1 cells, supported the hypothesis that PCBs caused increased steady-state levels of O2·− in mitochondria. Finally, treatment with either N-acetyl-cysteine (NAC), or the combination of polyethylene glycol (PEG) conjugated CuZnSOD and PEG-catalase added 1 hour after PCBs, significantly protected these cells from PCB toxicity. These results support the hypothesis that exposure of exponentially growing human breast and prostate epithelial cells to PCBs causes increased steady-state levels of intracellular O2·− and H2O2, induction of MnSOD or CuZnSOD activities, as well as clonogenic cell killing that could be inhibited by a clinically relevant thiol antioxidant, NAC, as well as by catalase and superoxide dismutase following PCB exposure.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号