首页> 美国卫生研究院文献>other >Spectroscopic Investigation of Peridinin Analogues having Different π-electron Conjugated Chain Lengths: Exploring the Nature of the Intramolecular Charge Transfer State
【2h】

Spectroscopic Investigation of Peridinin Analogues having Different π-electron Conjugated Chain Lengths: Exploring the Nature of the Intramolecular Charge Transfer State

机译:具有不同π电子共轭链长度的白蛋白类似物的光谱研究:探索分子内电荷转移状态的性质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The lifetime of the lowest excited singlet (S1) state of peridinin and many other carbonyl-containing carotenoids and polyenes has been reported depend on the polarity of the solvent. This effect has been attributed to the presence of an intramolecular charge transfer (ICT) state in the manifold of excited states for these molecules. The nature of this ICT state has yet to be elucidated. In the present work, steady-state and ultrafast time-resolved optical spectroscopy have been performed on peridinin and three synthetic analogues, C33-peridinin, C35-peridinin, and C39-peridinin which have different numbers of conjugated carbon-carbon double bonds. Otherwise, the molecules are structurally similar in that they posses the same functional groups. The trends in the positions of the steady-state and transient spectral profiles for this systematic series of molecules allow an assignment of the spectral features to transitions involving the S0, S1, S2 and ICT states. A kinetics analysis reveals the lifetimes of the excited states and the dynamics of their excited state deactivation pathways. The most striking observation in the data is that the lifetime of the ICT state converges to the same value of 10.0 ± 2.0 ps in the polar solvent, methanol, for all the peridinin analogues regardless of the extent of π-electron conjugation. This suggests that the ICT state is highly localized on the lactone ring which is a common structural feature in all the molecules. The data further suggest that the S1 and ICT states behave independently and that the ICT state is populated both from both S1 and S2, the rate and efficiency from S1 being dependent on the length of the π-electron chain of the carotenoid and the solvent polarity.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号