首页> 美国卫生研究院文献>other >Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection
【2h】

Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection

机译:通过胆碱酯酶基于酶的再活化有机磷剂暴露的生物监测的碳纳米管增强的流动注射安培检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A portable, rapid, and sensitive assessment of sub-clinical organophosphorus (OPs) agent exposure based on reactivation of cholinesterase (ChE) from OP-inhibited ChE using rat saliva (in vitro) was developed using an electrochemical sensor coupled with a microflow-injection system. The sensor was based on a carbon nanotube (CNT)-modified screen printed carbon electrode (SPE), which was integrated into a flow cell. Due to the extent of inter-individual ChE activity variability, ChE biomonitoring often requires an initial baseline determination (non-inhibited) of enzyme activity which is then directly compared with activity after OP exposure. This manuscript describes an alternative strategy where reactivation of the phosphorylated enzyme was exploited to enable measurement of both inhibited and baseline ChE activity (after reactivation by an oxime, i.e. pralidoxime iodide) in the same sample. The use of CNT makes the electrochemical detection of the products from enzymatic reactions more feasible with extremely high sensitivity (5% ChE inhibition) and selectivity. Paraoxon was selected as a model OP compound for in vitro inhibition studies. Some experiment parameters, (e.g. inhibition and reactivation times), have been optimized such that, 92 - 95% ChE reactivation can be achieved over a broad range of ChE inhibition (5 - 94 %) with paraoxon. The extent of enzyme inhibition using this electrochemical sensor correlates well with conventional enzyme activity measurements. Based on the double determinations of enzyme activity, this flow-injection device has been successfully used to detect paraoxon inhibition efficiency in saliva samples (95% of ChE activity is due to butyrylcholinesterase), which demonstrated its promise as a sensitive monitor of OP exposure in biological fluids. Since it excludes inter- or intra-individual variation in the normal levels of ChE, this new CNT-based electrochemical sensor thus provides a sensitive and quantitative tool for point- of-care assessment and noninvasive biomonitoring of the exposure to OP pesticides and chemical nerve agents.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号