首页> 美国卫生研究院文献>other >AMPA Receptor Subunit GluR1 Downstream of D-1 Dopamine Receptor Stimulation in Nucleus Accumbens Shell Mediates Increased Drug Reward Magnitude in Food-Restricted Rats
【2h】

AMPA Receptor Subunit GluR1 Downstream of D-1 Dopamine Receptor Stimulation in Nucleus Accumbens Shell Mediates Increased Drug Reward Magnitude in Food-Restricted Rats

机译:下游D-1多巴胺受体刺激下游的AMPA受体亚基Glur1介导食物限制大鼠中的药物奖励量增加

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Previous findings suggest that neuroadaptations downstream of D-1 dopamine (DA) receptor stimulation in nucleus accumbens (NAc) are involved in the enhancement of drug reward by chronic food restriction (FR). Given the high co-expression of D-1 and GluR1 AMPA receptors in NAc, and the regulation of GluR1 channel conductance and trafficking by D-1-linked intracellular signaling cascades, the present study examined effects of the D-1 agonist, SKF-82958, on NAc GluR1 phosphorylation, intracranial electrical self-stimulation reward (ICSS), and reversibility of reward effects by a polyamine GluR1 antagonist, 1-NA-spermine, in ad libitum fed (AL) and FR rats. Systemically administered SKF-82958, or brief ingestion of a 10% sucrose solution, increased NAc GluR1 phosphorylation on Ser845, but not Ser831, with a greater effect in FR than AL rats. Microinjection of SKF-82958 in NAc shell produced a reward-potentiating effect that was greater in FR than AL rats, and was reversed by co-injection of 1-NA-spermine. GluR1 abundance in whole cell and synaptosomal fractions of NAc did not differ between feeding groups, and microinjection of AMPA, while affecting ICSS, did not exert greater effects in FR than AL rats. These results suggest a role of NAc GluR1 in the reward-potentiating effect of D-1 DA receptor stimulation and its enhancement by FR. Moreover, GluR1 involvement appears to occur downstream of D-1 DA receptor stimulation rather than reflecting a basal increase in GluR1 expression or function. Based on evidence that phosphorylation of GluR1 on Ser845 primes synaptic strengthening, the present results may reflect a mechanism via which FR normally facilitates reward-related learning to re-align instrumental behavior with environmental contingencies under the pressure of negative energy balance.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号