首页> 美国卫生研究院文献>other >Activation of extracellular signal-regulated kinases in social behavior circuits during resident-intruder aggression tests
【2h】

Activation of extracellular signal-regulated kinases in social behavior circuits during resident-intruder aggression tests

机译:居民入侵者侵袭试验期间社会行为电路中细胞外信号调节激酶的激活

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Using a variety of experimental methods, a network of brain areas regulating aggressive behaviors has been outlined in several groups of vertebrates. However, aggressive behavior expressed in different contexts is associated with different patterns of activity across hypothalamic and limbic brain regions. Previous studies in rodents demonstrated that short day photoperiods reliably increase both male and female aggression versus long day photoperiods. Here we used immunohistochemistry and western blots to examine the effect of photoperiod on phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK) in male California mice (Peromyscus californicus) during resident-intruder tests. Phosphorylated ERK (pERK) can alter neuronal activity in the short term and in the long term acts as a transcription factor. In the posterior bed nucleus of the stria terminalis (BNST) males tested in aggression tests had more phosphorylated ERK (pERK) positive cells when housed in short days but not long days. This result was replicated in western blot analyses from microdissected BNST samples. In the medial amygdala, immunostaining and western analyses showed that pERK expression also was generally increased in short days. Immunostaining was also used to examine phosphorylation of cyclic AMP response element binding protein (CREB). CREB can be phosphorylated by pERK as well as other kinases and functions primarily as a transcription factor. Intriguingly, aggressive interactions reduced the number of cells stained positive for phosphorylated CREB in the infralimbic cortex, ventral lateral septum and MEA. This effect was observed in mice housed in long days but not short days. Overall, these data suggest that different (but overlapping) networks of aggressive behavior operate under different environmental conditions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号