首页> 美国卫生研究院文献>other >Hypoxia Inducible Factor 1α Signaling in Fractionated Radiation-Induced Lung Injury: Role of Oxidative Stress and Tissue Hypoxia
【2h】

Hypoxia Inducible Factor 1α Signaling in Fractionated Radiation-Induced Lung Injury: Role of Oxidative Stress and Tissue Hypoxia

机译:缺氧诱导因子1α信号在分割放疗引起的肺损伤:氧化应激和组织缺氧的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To investigate the relationship of HIF1α signaling to oxidative stress, tissue hypoxia, angiogenesis and inflammation, female Fischer 344 rats were irradiated to the right hemithorax with a fractionated dose of 40 Gy (8 Gy × 5 days). The lung tissues were harvested before and at 4, 6, 10, 14, 18, 22 and 26 weeks after irradiation for serial studies of biological markers, including markers for hypoxia (HIF1α, pimonidazole and CA IX), oxidative stress (8-OHdG), and angiogenesis/capillary proliferation (VEGF/CD 105), as well as macrophage activation (ED-1) and cell signaling/fibrosis (NFκB, TGFβ1), using immunohistochemistry and Western blot analysis. HIF1α staining could be observed as early as 4 weeks postirradiation and was significantly increased with time after irradiation. Importantly, HIF1α levels paralleled oxidative stress (8-OHdG), tissue hypoxia (pimonidazole and CA IX), and macrophage accumulation consistent with inflammatory response. Moreover, changes in HIF1α expression identified by immunohistochemistry assay parallel the changes in TGFβ1, VEGF, NFκB and CD 105 levels in irradiated lungs. These results support the notion that oxidative stress and tissue hypoxia might serve as triggering signals for HIF1α activity in irradiated lungs, relating to radiation-induced inflammation, angiogenesis and fibrosis.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号