首页> 美国卫生研究院文献>other >Sonic Hedgehog (SHH) Promotes the Differentiation of Mouse Cochlear Neural Progenitors via the Math1–Brn3.1 Signaling pathway in vitro
【2h】

Sonic Hedgehog (SHH) Promotes the Differentiation of Mouse Cochlear Neural Progenitors via the Math1–Brn3.1 Signaling pathway in vitro

机译:Sonic Hedgehog(SHH)通过Math1-BRN3.1信号传导途径促进小鼠耳蜗神经祖细胞的分化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sonic hedgehog (SHH) is essential for the development of the cochlear duct that harbors the organ of Corti. However, little is known about the molecular signaling pathway through which SHH promotes the development of the organ of Corti, especially cochlear sensory epithelial cells. In this study, we demonstrated that SHH contributes to the differentiation of cochlear neural progenitors (CNPs), which are derived from the postnatal day 1 organ of Corti in mice. Addition of SHH to CNPs increased the formation of epithelial cell islands, simultaneously activated the expression of Math1 that is a transcription factor for the initial differentiation of auditory hair cells. The increased expression of Math1 then regulated the promoter activity of Brn3.1, another transcription factor that controls the further differentiation and survival of auditory hair cells. Taken together, our data suggest that SHH plays an important role in the promotion of auditory hair cell differentiation via the Math1-Brn3.1 signaling pathway.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号