首页> 美国卫生研究院文献>other >Mechanical and Cell Viability Properties of Crosslinked Low and High Molecular Weight Poly(ethylene glycol) Diacrylate Blends
【2h】

Mechanical and Cell Viability Properties of Crosslinked Low and High Molecular Weight Poly(ethylene glycol) Diacrylate Blends

机译:交联低和高分子量聚(乙二醇)二丙烯酸酯共混物的机械和细胞活力性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is a strong need for tissue engineering scaffolds that are mechanically robust, exhibit good biocompatibility, and can be made from readily available materials. To this end, blends of commercially available poly(ethylene glycol) diacrylate (PEGDA) with molecular weights of 400 and 3400 were UV-crosslinked at total polymer concentrations that varied systematically from 20 to 40 wt %. The compressive strength and cell viability were determined for each PEGDA mixture. The compressive modulus of the blends was maximized when the wt % ratio PEGDA3400/400 was about 40/60, with the compressive strength reaching 1.7 MPa. Cell viability results with a LIVE/DEAD fluorescence assay show an average viability of ~ 80% at a total PEGDA concentration of 20 wt %, for all blends. Increasing the total polymer concentration increased the compressive modulus of a polymer, but adversely affected cell viability for all the PEGDA blend compositions. The blend composition affected the mechanical behavior of the discs, where a higher degree of crosslinking was achieved by increasing the concentration of shorter chained PEGDA400, whereas elasticity was gained by incorporating longer chained PEGDA3400 into the blends. These results can be exploited for use in tissue engineering applications, where a mechanically robust scaffold is advantageous.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号