首页> 美国卫生研究院文献>other >Luteolin and gefitinib regulation of EGF Signaling Pathway and Cell Cycle Pathway genes in PC-3 human prostate cancer cells
【2h】

Luteolin and gefitinib regulation of EGF Signaling Pathway and Cell Cycle Pathway genes in PC-3 human prostate cancer cells

机译:Luteolin和Gefitinib对PC-3人前列腺癌细胞中的EGF信号通路和细胞周期途径基因的调节

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

cRNA microarray and real-time PCR (qPCR) studies from our lab identified five Cell Cycle Pathway (CCP) genes (CCNA2, CCNE2, CDC25A, CDKN1B, PLK-1) as targets for luteolin in PC-3 prostate cancer cells (Shoulars et. al, J Steroid Biochem Mol Biol, 118: 41–50, 2010). In this paper, Ingenuity Pathway Analysis of the microarray data identified 7 luteolin-regulated genes (EGFR, c-Fos, SOS, GRB2, JNK1, MKK4 and RasGAP) in the Epidermal Growth Factor Signaling Pathway (EGFSP) potentially involved in luteolin regulation of CCP genes and cell proliferation. To address these possibilities, we compared the response profiles (RNA and protein) of these EGFSP and CCP genes to luteolin and gefitinib by real-time PCR (qPCR) and Western blot analyses. Luteolin and gefitinib are known antagonists of EGFR-associated tyrosine protein kinase. Thus, the response profiles of EGFR regulated EGFSP or CCP genes should be very similar if genes in both pathways are controlled through this common mechanism of action. Treatment of PC-3 cell with luteolin for 24 hours caused a 4-fold stimulation of c-Fos gene expression, significant inhibition (p<0.001) of the CCP genes and G2/M arrest. Treatment of PC-3 cells with gefitinib also inhibited most of the CCP genes in a fashion similar to that of luteolin, however, the EGFR antagonist inhibited c-Fos gene expression, stimulated CDKN1B (p27) and arrested the cells in G0/G1. Thus, although the response patterns of most of the CCP genes to luteolin or gefitinib were similar, the effects of the two compounds on EGFSP gene expression and cell cycle arrest were clearly different. Combination studies revealed that the response of EGFSP genes to luteolin was not affected by gefitinib, even though the two compounds were additive with respect to their abilities to inhibit CCNA2, CCNE2, CDC25A and PCNA. These findings suggest that luteolin and gefitinib regulate CCP gene expression through a common mechanism involving EGFR-associated tyrosine kinase. Conversely, luteolin regulates PC-3 cell proliferation through an EGFR-tyrosine kinase independent mechanism(s), likely involving the epigenetic control of gene EGFSP gene expression through histone H4 binding interactions resulting in the upregulation of c-FOS and p21 gene expression.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号