首页> 美国卫生研究院文献>other >Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs)
【2h】

Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs)

机译:新型真菌P450单氧基酶氧化多环芳烃(PAHS)的基因组 - 函数表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fungi, particularly the white rot basidiomycetes, have an extraordinary capability to degrade and/or mineralize (to CO2) the recalcitrant fused-ring high molecular weight (≥ 4 aromatic-rings) polycyclic aromatic hydrocarbons (HMW PAHs). Despite over 30 years of research demonstrating involvement of P450 monooxygenation reactions in fungal metabolism of HMW PAHs, specific P450 monooxygenases responsible for oxidation of these compounds are not yet known. Here we report the first comprehensive identification and functional characterization of P450 monooxygenases capable of oxidizing different ring-size PAHs in the model white rot fungus Phanerochaete chrysosporium using a successful genome-to-function strategy. In a genome-wide P450 microarray screen, we identified six PAH-responsive P450 genes (Pc-pah1 - Pc-pah6) inducible by PAHs of varying ring size, namely naphthalene, phenanthrene, pyrene, and benzo(a)pyrene (BaP). Using a co-expression strategy, cDNAs of the six Pc-Pah P450s were cloned and expressed in Pichia pastoris in conjunction with the homologous P450 oxidoreductase (Pc-POR). Each of the six recombinant P450 monooxygenases showed PAH-oxidizing activity albeit with varying substrate specificity towards PAHs (3–5 rings). All six P450s oxidized pyrene (4-ring) into two monohydroxylated products. Pc-Pah1 and Pc-Pah3 oxidized BaP (5-ring) to 3-hydroxyBaP whereas Pc-Pah4 and Pc-Pah6 oxidized phenanthrene (3-ring) to 3-, 4-, and 9-phenanthrol. These PAH-oxidizing P450s (493 – 547 aa) are structurally diverse and novel considering their low overall homology (12–23%) to mammalian counterparts. To our knowledge, this is the first report on specific fungal P450 monooxygenases with catalytic activity toward environmentally persistent and highly toxic HMW PAHs.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号