首页> 美国卫生研究院文献>other >The Complex Role of Multivalency in Nanoparticles Targeting the Transferrin Receptor for Cancer Therapies
【2h】

The Complex Role of Multivalency in Nanoparticles Targeting the Transferrin Receptor for Cancer Therapies

机译:多价的纳米粒子的复杂的角色定位转铁蛋白受体对癌症治疗

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Transferrin receptor (TfR, CD71) has long been therapeutic target due to its over-expression on many malignant tissues. In this study, PRINT® nanoparticles were conjugated with TfR ligands for targeted drug delivery. Cylindrical poly(ethylene glycol)-based PRINT nanoparticles (diameter [d] = 200 nm, height [h] = 200 nm) labeled with transferrin receptor antibody (NP-OKT9) or human transferrin (NP-hTf), showed highly specific TfR-mediated uptake by all human tumor cell lines tested, relative to negative controls (IgG1 for OKT9 or bovine transferrin (bTf) for hTf). The targeting efficiency was dependent on particle concentration, ligand density, dosing time and cell surface receptor expression level. Interestingly, NP-OKT9 or NP-hTf showed little cytotoxicity on all solid tumor cell lines tested but were very toxic to Ramos B-cell lymphoma, whereas free OKT9 or hTf was not toxic. There was a strong correlation between TfR ligand density on particle surface and cell viability and particle uptake. NP-OKT9 and NP-hTf were internalized into acidic intracellular compartments but were not localized in EEA1 enriched early endosomes or lysosomes. Elevated caspase 3/7 activity indicates activation of apoptosis pathways upon particle treatment. Supplementation of iron suppressed the toxicity of NP-OKT9 but not NP-hTf, suggesting different mechanisms by which NP-hTf and NP-OKT9 exerts cytotoxicity on Ramos cells. Based on such an observation, the complex role of multivalency in nanoparticles is discussed. In addition, our data clearly reveal that one must be careful in making claims of “lack of toxicity” when a targeting molecule is used on nanoparticles and also raise concerns for unanticipated off-target effects when one is designing targeted chemotherapy nano-delivery agents.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号