首页> 美国卫生研究院文献>other >Modeling and analysis of mechanisms underlying fMRI-based decoding of information conveyed in cortical columns
【2h】

Modeling and analysis of mechanisms underlying fMRI-based decoding of information conveyed in cortical columns

机译:建模和潜在的机制分析功能磁共振成像系的信息解码在皮层柱输送

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multivariate machine learning algorithms applied to human functional MRI (fMRI) data can decode information conveyed by cortical columns, despite the voxel-size being large relative to the width of columns. Several mechanisms have been proposed to underlie decoding of stimulus orientation or the stimulated eye. These include: (I) aliasing of high spatial-frequency components, including the main frequency component of the columnar organization, (II) contributions from local irregularities in the columnar organization, (III) contributions from large-scale non-columnar organizations, (IV) functionally selective veins with biased draining regions, and (V) complex spatio-temporal filtering of neuronal activity by fMRI voxels. Here we sought to assess the plausibility of two of the suggested mechanisms: (I) aliasing and (II) local irregularities, using a naive model of BOLD as blurring and MRI voxel sampling.To this end, we formulated a mathematical model that encompasses both the processes of imaging ocular dominance (OD) columns and the subsequent linear classification analysis. Through numerical simulations of the model, we evaluated the distribution of functional differential contrasts that can be expected when considering the pattern of cortical columns, the hemodynamic point spread function, the voxel size, and the noise. We found that with data acquisition parameters used at 3 Tesla, sub-voxel supra-Nyquist frequencies, including frequencies near the main frequency of the OD organization (0.5 cycles per mm), cannot contribute to the differential contrast. The differential functional contrast of local origin is dominated by low-amplitude contributions from low frequencies, associated with irregularities of the cortical pattern. Realizations of the model with parameters that reflected best-case scenario and the reported BOLD point-spread at 3 Tesla (3.5 mm) predicted decoding performances lower than those that have been previously obtained at this magnetic field strength. We conclude that low frequency components that underlie local irregularities in the columnar organization are likely to play a role in decoding. We further expect that fMRI-based decoding relies, in part, on signal contributions from large-scale, non-columnar functional organizations, and from complex spatio-temporal filtering of neuronal activity by fMRI voxels, involving biased venous responses. Our model can potentially be used for evaluating and optimizing data-acquisition parameters for decoding information conveyed by cortical columns.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号