首页> 美国卫生研究院文献>other >Characterization of Single-core Magnetite Nanoparticles for Magnetic Imaging by SQUID-relaxometry
【2h】

Characterization of Single-core Magnetite Nanoparticles for Magnetic Imaging by SQUID-relaxometry

机译:单核心的磁性纳米颗粒表征磁成像通过sQUID弛豫时间

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optimizing the sensitivity of SQUID (superconducting quantum interference device)-relaxometry for detecting cell-targeted magnetic nanoparticles for in vivo diagnostics requires nanoparticles with a narrow particle size distribution to ensure that the Néel relaxation times fall within the measurement timescale (50 ms - 2 s, in this work). To determine the optimum particle size, single-core magnetite nanoparticles (with nominal average diameters 20, 25, 30, and 35 nm) were characterized by SQUID-relaxometry, transmission electron microscopy (TEM), SQUID-susceptometry, dynamic light scattering, and zeta potential analysis. The SQUID-relaxometry signal (detected magnetic moment/kg) from both the 25 nm and 30 nm particles was an improvement over previously-studied multi-core particles. However, the detected moments were an order of magnitude lower than predicted based on a simple model that takes into account the measured size distributions (but neglects dipolar interactions and polydispersity of the anisotropy energy density), indicating that improved control of several different nanoparticle properties (size, shape, coating thickness) will be required to achieve the highest detection sensitivity. Antibody conjugation and cell incubation experiments show that single-core particles enable a higher detected moment per cell, but also demonstrate the need for improved surface treatments to mitigate aggregation and improve specificity.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号