首页> 美国卫生研究院文献>other >Activation of phenotypically-distinct neuronal subpopulations of the rat amygdala following exposure to predator odor
【2h】

Activation of phenotypically-distinct neuronal subpopulations of the rat amygdala following exposure to predator odor

机译:在暴露于捕食剂气味之后大鼠杏仁醛的表型不同神经元亚群的激活

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Exposure of rats to an odor of a predator can elicit an innate fear response. In addition, such exposure has been shown to activate limbic brain regions such as the amygdala. However, there is a paucity of data on the phenotypic characteristics of the activated amygdalar neurons following predator odor exposure. In the current experiments, rats were exposed to cloth which contained either ferret odor, butyric acid, or no odor for 30 minutes. Ferret odor-exposed rats displayed an increase in defensive burying versus control rats. Sections of the brains were prepared for dual-labeled immunohistochemistry and counts of c-Fos co-localized with Ca2+/calmodulin-dependent protein kinase II (CAMKII), parvalbumin, or calbindin were made in the basolateral (BLA), central (CEA), and medial (MEA) nucleus of the amygdala. Dual-labeled immunohistochemistry showed a significant increase in the percentage of CAMKII–positive neurons also immunoreactive for c-Fos in the BLA, CEA and MEA of ferret odor-exposed rats compared to control and butyric acid-exposed groups. Further results showed a significant decrease in calbindin-immunoreactive neurons that were also c-Fos-positive in the anterior portion of the BLA of ferret odor-exposed rats compared to control and butyric acid-exposed rats, whereas the MEA expressed a significant decrease in calbindin/c-Fos dual-labeled neurons in butyric acid-exposed rats compared to controls and ferret odor-exposed groups. These results enhance our understanding of the functioning of the amygdala following exposure to predator threats by showing phenotypic characteristics of activated amygdalar neurons. With this knowledge, specific neuronal populations could be targeted to further elucidate the fundamental underpinnings of anxiety and could possibly indicate new targets for the therapeutic treatment of anxiety.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号