首页> 美国卫生研究院文献>other >Volatile anesthetic post-treatment induces protection via inhibition of glycogen synthase kinase 3β in human neuron-like cells
【2h】

Volatile anesthetic post-treatment induces protection via inhibition of glycogen synthase kinase 3β in human neuron-like cells

机译:挥发性麻醉后处理通过抑制人神经元样细胞中的糖原合酶激酶3β诱导保护

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Application of the volatile anesthetic isoflurane during the early phase of reperfusion reduces ischemic heart and brain injury (anesthetic postconditioning). We hypothesize that inhibition of glycogen synthase kinase 3β (GSK3β), a protein whose activation can lead to cell death, participates in anesthetic postconditioning-induced neuroprotection. SH-SY5Y cells, a human neuroblastoma cell line, were induced by retinoic acid to differentiate into terminal neuron-like cells. The cells then were subjected to a 1-h oxygen-glucose deprivation (OGD), a condition to simulate ischemia in vitro, and a 20-h simulated reperfusion. Isoflurane, sevoflurane or desflurane, three commonly used volatile anesthetics, was applied for 1 h during the early phase of simulated reperfusion. Cell injury was quantified by lactate dehydrogenase (LDH) release. Phospho-GSK3β at Ser9 and total GSK3β were quantified at 1 or 3 h after the OGD. OGD increased LDH release, suggesting that OGD induced cell injury. Post-treatment with isoflurane, sevoflurane or desflurane reduced this cell injury. This protection was apparent when 2% isoflurane was applied within 1 h after the onset of reperfusion. Isoflurane post-treatment also significantly increased the phosphorylation of GSK3β at Ser9 at 1 h after the OGD. GSK3β inhibitors reduced OGD and simulated reperfusion-induced LDH release. The combination of GSK3β inhibitors and isoflurane postconditioning did not cause a greater protection than isoflurane postconditioning alone. These results suggest that volatile anesthetic postconditioning reduces OGD and simulated reperfusion-induced cell injury. Since phospho-GSK3β at Ser9 decreases GSK3β activity, our results suggest that volatile anesthetic postconditioning in human neuron-like cells may be mediated by GSK3β inhibition.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号