首页> 美国卫生研究院文献>other >A Bulk-Water-Dependent Desolvation Energy Model for Analyzing the Effects of Secondary Solutes on Biological Equilibria
【2h】

A Bulk-Water-Dependent Desolvation Energy Model for Analyzing the Effects of Secondary Solutes on Biological Equilibria

机译:一种体依赖水退溶能源模型分析二级溶质的影响生物平衡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new phenomenological model for interpreting solute effects on biological equilibria is presented. The model attributes changes in equilibria to differences in the desolvation energy of the reacting species which, in turn, reflect changes in the free energy of the bulk water on addition of secondary solutes. The desolvation approach differs notably from other solute models by treating the free energy of bulk water as a variable and by not ascribing the observed shifts in reaction equilibria to accumulation or depletion of solutes next to the surfaces of the reacting species. On the contrary, the partitioning of solutes is viewed as a manifestation of the different subpopulations of water that arise in response to the surface boundary conditions. A thermodynamic framework consistent with the proposed model is used to derive a relationship for a specific reaction, an aqueous solubility equilibrium, in two or more solutions. The resulting equation reconciles some potential issues with the transfer free energy model of Tanford. Application of the desolvation energy model to the analysis of a two-state protein folding equilibrium is discussed and contrasted to the application of two other solute models developed by Timasheff and by Parsegian. Future tabulation of solvation energies and bulk water energies may allow biophysical chemists to confirm the mechanism by which secondary solutes influence binding and conformational equilibria and may provide a common ground for experimentalists and theoreticians to compare and evaluate their results.

著录项

  • 期刊名称 other
  • 作者

    Daryl K. Eggers;

  • 作者单位
  • 年(卷),期 -1(50),12
  • 年度 -1
  • 页码 2004–2012
  • 总页数 20
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号