首页> 美国卫生研究院文献>other >Frequency-Specific Electrocorticographic Correlates of Working Memory Delay Period fMRI Activity
【2h】

Frequency-Specific Electrocorticographic Correlates of Working Memory Delay Period fMRI Activity

机译:频率特定的电性电容检查工作记忆延迟周期FMRI活动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrocorticography (ECoG) and functional MRI (BOLD-fMRI) have been used previously to measure brain activity during working memory delay periods. These studies have separately reported oscillation changes in the theta (4-8 Hz) band and BOLD-fMRI increases during delay periods when information is maintained in memory. However, it is not known how intracranial cortical field potential (CFP) changes relate to BOLD-fMRI responses during delay periods. To answer this question, fMRI was obtained from six epilepsy patients during a visual working memory task. Then, following subdural macroelectrode implant, continuous ECoG was used to record CFPs during the same task. Time-frequency analyses showed delay period gamma band oscillation amplitude increases on electrodes located near fMRI activity, while in the theta band changes were higher for electrodes located away from fMRI activation. The amplitude of the ECoG gamma band response was significantly positively correlated with the fMRI response, while a negative correlation was found for the theta band. The findings are consistent with previous reports of local field potential (LFP) coupling in the gamma band with BOLD-fMRI responses during visual stimulation in monkeys, but are novel in that the relationship reported here persists after the disappearance of visual stimuli while information is being maintained in memory. We conclude that there is a relationship between BOLD-fMRI increases and human working memory delay period gamma oscillation increases and theta decreases. The spectral profile change provides a basis for comparison of working memory delay period BOLD-fMRI with field potential recordings in animals and other human intracranial EEG studies.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号