首页> 美国卫生研究院文献>other >Development of Polarizable Models for Molecular Mechanical Calculations II: Induced Dipole Models Significantly Improve Accuracy of Intermolecular Interaction Energies
【2h】

Development of Polarizable Models for Molecular Mechanical Calculations II: Induced Dipole Models Significantly Improve Accuracy of Intermolecular Interaction Energies

机译:用于分子机械计算的可极化模型II:诱导偶极模型显着提高分子间互动能量的准确性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the companion paper, we presented a set of induced dipole interaction models using four types of screening functions, which include the Applequist (no screening), the Thole linear, the Thole exponential model, and the Thole Tinker-like (another form of exponential screening function) functions. In this work, we evaluate the performance of polarizability models using large set of amino acid analog pairs that are frequently observed in protein structures as a benchmark. For each amino acid pair we calculated quantum mechanical interaction energies at the MP2/aug-cc-pVTZ//MP2/6-311++G(d,p) level with the basis set superposition error (BSSE) correction and compared them with molecular mechanics results. Encouragingly, all the polarizable models significantly outperform the additive F94 and F03 models (mimicking AMBER ff94/ff99 and ff03 force fields, respectively) in reproducing the BSSE-corrected quantum mechanical interaction energies. Particularly, the root-mean-square errors (RMSE) for three Thole models in Set A (where the 1–2 and 1–3 interactions are turned off and all 1–4 interactions are included) are 1.456, 1.417 and 1.406 kcal/mol for Model AL (Thole Linear), Model AE (Thole exponential) and Model AT (Thole Tinker-like), respectively. In contrast, the RMSE are 3.729 and 3.433 kcal/mol for F94 and F03 models, respectively. A similar trend was observed for the average unsigned errors (AUE), which are 1.057, 1.025, 1.011, 2.219 and 2.070 kcal/mol for AL, AE, AT, F94/ff99 and F03, respectively. Analyses based on the trend line slopes indicate that the two fixed charge models substantially underestimate the relative strengths of non-charge-charge interactions by 24% (F03) and 35% (F94), respectively, whereas the four polarizable models over-estimate the relative strengths by 5% (AT), 3% (AL, AE) and 13% (AA), respectively. Agreement was further improved by adjusting the van der Waals parameters. Judging from the notably improved accuracy in comparison to the fixed charge models, the polarizable models are expected to form the foundation for the development of high quality polarizable force fields for protein and nucleic acid simulations.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号