首页> 美国卫生研究院文献>other >On the Binding Strength Sequence for Nucleic Acid Bases and C60 with Density Functional and Dispersion-corrected Density Functional Theories: Whether C60 could protect nucleic acid bases from radiation-induced damage?
【2h】

On the Binding Strength Sequence for Nucleic Acid Bases and C60 with Density Functional and Dispersion-corrected Density Functional Theories: Whether C60 could protect nucleic acid bases from radiation-induced damage?

机译:在核酸碱的结合强度序列 C60具有密度函数和色散校正的密度 功能理论:C60是否可以保护核酸碱 从辐射引起的损伤?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The major objective of this paper is to address a controversial binding sequence between nucleic acid bases (NABs) and C60 by investigating adsorptions of NABs and their cations on C60 fullerene with a variety of density functional theories including two novel hybrid meta-GGA functionals, M05-2x and M06-2x, as well as a dispersion-corrected density functional, PBE-D. The M05-2x/6-311++G** provides the same binding sequence as previously reported, guanine(G) > cytosine(C) > adenine (A) > thymine (T); however, M06-2x switches the binding strengths of A and C, and PBE-D eventually results in the following sequence, G>A>T>C, which is the same as the widely accepted hierarchy for the stacking of NABs on other carbon nanomaterials such as single-walled carbon nanotube and graphite. The results indicate that the questionable relative binding strength is due to insufficient electron correlation treatment with the M05-2x or even the M06-2x method. The binding energy of G@C60 obtained with the M06-2x/6-311++G(d,p) and the PBE-D/cc-pVDZ is −7.10 and −8.07 kcal/mol, respectively, and the latter is only slightly weaker than that predicted by the MP2/6-31G(d,p) (−8.10kca/mol). Thus, the PDE-D performs better than the M06-2x for the observed NAB@C60 π-stacked complexes. To discuss whether C60 could prevent NABs from radiation-induced damage, ionization potentials of NABs and C60, and frontier molecular orbitals of the complexes NABs@C60 and (NABs@C60)+ are also extensively investigated. These results revealed that when an electron escapes from the complexes, a hole was preferentially created in C60 for T and C complexes, while for G and A the hole delocalizes over the entire complex, rather than a localization on the C60 moiety. The interesting finding might open a new strategy for protecting DNA from radiation-induced damage and offer a new idea for designing C60-based antiradiation drugs.

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号