首页> 美国卫生研究院文献>other >Altered Inflammatory Oxidative and Metabolic Responses to Exercise in Pediatric Obesity and Type 1 Diabetes
【2h】

Altered Inflammatory Oxidative and Metabolic Responses to Exercise in Pediatric Obesity and Type 1 Diabetes

机译:改变炎症氧化和代谢反应在儿科肥胖和1型糖尿病中进行运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Obesity (Ob) and type 1 diabetes (T1DM) are associated with increased inflammation and oxidative stress, which are major pathogenetic pathways toward higher cardiovascular risks. While long-term exercise protects against systemic inflammation and oxidation, acute exercise actually exerts pro-inflammatory and oxidative effects, prompting the necessity for better defining these molecular processes in at-risk patients; in particular, very little is known regarding obese and T1DM children. We therefore examined key inflammatory and oxidative stress variables during exercise in 138 peripubertal children (47 Ob, 12.7±0.4 yr, 22F, BMI% 97.6±0.2; 49 T1DM, 13.9±0.2 yr, 20F, BMI% 63.0±3.6; 42 healthy, CL, 13.5±0.5 yr, 24F, BMI% 57.0±3.6), who performed 10 bouts of 2-min cycling ~80% VO2max, separated by 1-min rest intervals. Blood samples were drawn at baseline and peak-exercise. Ob displayed elevated baseline interleukin-6 (IL-6, 2.1±0.2 pg/mL, p<0.005) vs. CL (1.5±0.3), while T1DM displayed the greatest maximum exercise-induced change in IL-6 (1.2±0.3) than in both Ob (0.7±0.1, p< 0.001) and CL (0.6±0.1, p<0.0167). Myeloperoxidase (MPO) was elevated in T1DM (143±30 ng/mL, p<0.0167) vs. CL (89±10) and Ob (76±6), while increases in exercise only occurred in Ob and CL. Disparate baseline and exercise responses were also observed for 8-hydroxy-2′-deoxyguanosine, glutathione, and F2-isoprostane. This data show distinct patterns of dysregulation in baseline and adaptive immunologic and oxidative responses to exercise in Ob and T1DM. A full understanding of these alterations is required so that developing exercise regimens aimed at maximizing health benefits for specific dysmetabolic states can be achieved based on complete scientific characterization rather than empirical implementation.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号