首页> 美国卫生研究院文献>other >Elucidation of the protonation states of the catalytic residues in mtKasA - Implications for inhibitor design
【2h】

Elucidation of the protonation states of the catalytic residues in mtKasA - Implications for inhibitor design

机译:在mtKasa催化残基的质子化状态的解读 - 对于抑制剂设计的启示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

KasA (β-Ketoacyl ACP synthase I) is involved in the biosynthetic pathway of mycolic acids, an essential component of the cell wall in Mycobacterium tuberculosis. It was shown that KasA is essential for the survival of the pathogen and thus could serve as a new drug target to treat tuberculosis. The active site of KasA was previously characterized by X-ray crystallography. However, questions regarding the protonation state of specific amino acids, the orientation of the histidine groups within the active site, and additional conformers being accessible at ambient temperatures remain open and have to be addressed prior to the design of new inhibitors. We investigated the active site of KasA in the present work by means of structural motifs and relative energies. Molecular dynamics (MD) simulations, free energy perturbation (FEP) computations, and calculations employing the hybrid quantum mechanics/molecular mechanics (QM/MM) method made it possible to determine the protonation status and reveal important details about the catalytic mechanism of KasA. Additionally, we can rationalize the molecular basis for the acyl-transfer activity in the H311A mutant. Our data strongly suggest that inhibitors should be able to inhibit different protonation states because the enzyme can switch easily between a zwitterionic and neutral state.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号