首页> 美国卫生研究院文献>other >COMBINED EXPERIMENTAL AND MATHEMATICAL APPROACH FOR DEVELOPMENT OF MICROFABRICATION-BASED CANCER MIGRATION ASSAY
【2h】

COMBINED EXPERIMENTAL AND MATHEMATICAL APPROACH FOR DEVELOPMENT OF MICROFABRICATION-BASED CANCER MIGRATION ASSAY

机译:基于微制酶的癌症迁移测定的综合实验性和数学方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Migration of cancer cells is a key determinant of metastasis, which is correlated with poor prognosis in patients. Evidence shows that cancer cell motility is regulated by stromal cell interactions. To quantify the role of homotypic and heterotypic cell-cell interaction on migration, a two-dimensional migration assay has been developed by microfabrication techniques. Two breast cancer cell lines, MDA-MB-231 and MDA-MB-453, were used to develop micropatterns of cancer cells (cell islands) that revealed distinct migration profiles in this assay. Although the individual migration rates of these cells showed only a seven-fold difference, MDA-MB-453 islands migrated significantly lower than MDA-MB-231 islands, indicating differential regulation of migration in isolated cells vs. islands. Island size had the greatest impact on migration, primarily for MDA-MB-231 cells. Migration of MDA-MB-231 islands was decreased by interaction with homotypic cells, and significantly more by heterotypic non-cancer associated fibroblasts. In addition, a mathematical model of island migration in multi-cellular population has been developed using Stefan-Maxwell's equation. The model showed qualitative agreement with experimental results and predicted a biphasic relation between cell densities and island sizes. The combined experimental and mathematical model can be used to quantitatively study the impact of cell-cell interactions on migration.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号