首页> 美国卫生研究院文献>other >Correlation chemical shift imaging with low-power adiabatic pulses and constant-density spiral trajectories
【2h】

Correlation chemical shift imaging with low-power adiabatic pulses and constant-density spiral trajectories

机译:低功耗绝热脉冲和恒定密度螺旋轨迹的相关化学换档成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

In this work we introduce the concept of correlation chemical shift imaging (CCSI). Novel CCSI pulse sequences are demonstrated on clinical scanners for two-dimensional COSY (Correlation Spectroscopy) and TOCSY (Total Correlation Spectroscopy) imaging experiments. To date there has been limited progress reported towards a feasible and robust multivoxel 2D COSY. Localized 2D TOCSY imaging is shown first time in this work. Excitation with adiabatic GOIA-W(16,4) pulses (Gradient Offset Independent Adiabaticity Wurst modulation) provides minimal chemical shift displacement error, reduced lipid contamination from subcutaneous fat, uniform optimal flip angles, and efficient mixing for coupled spins, while enabling short repetition times due to low power requirements. Constant-density spiral readout trajectories are used to acquire simultaneously two spatial dimensions and f2 frequency dimension in (kx,ky,t2) space in order to speed up data collection, while f1 frequency dimension is encoded by consecutive time increments of t1 in (kx,ky,t1,t2) space. The efficient spiral sampling of the k-space enables the acquisition of a single-slice 2D COSY dataset with an 8×8 matrix in 8:32 min on 3T clinical scanners, which makes it feasible for in-vivo studies on human subjects. Here we present the first results obtained on phantoms, human volunteers and patients with brain tumors. The patient data obtained by us represent the first clinical demonstration of a feasible and robust multivoxel 2D COSY. Compared to the 2D J-resolved method, 2D COSY and TOCSY provide increased spectral dispersion which scales up with increasing main magnetic field strength and may have improved ability to unambiguously identify overlapping metabolites. It is expected that the new developments presented in this work will facilitate in-vivo application of 2D chemical shift correlation MRS in basic science and clinical studies.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号