首页> 美国卫生研究院文献>other >The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation
【2h】

The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation

机译:受控能量存储和返回原型的效果对宁截止运动的假体脚

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The lack of functional ankle musculature in lower limb amputees contributes to the reduced prosthetic ankle push-off, compensations at other joints and more energetically costly gait commonly observed in comparison to non-amputees. A variety of energy storing and return prosthetic feet have been developed to address these issues but have not been shown to sufficiently improve amputee biomechanics and energetic cost, perhaps because the timing and magnitude of energy return is not controlled. The goal of this study was to examine how a prototype microprocessor-controlled prosthetic foot designed to store some of the energy during loading and return it during push-off affects amputee gait. Unilateral transtibial amputees wore the Controlled Energy Storage and Return prosthetic foot (CESR), a conventional foot (CONV), and their previously prescribed foot (PRES) in random order. Three-dimensional gait analysis and net oxygen consumption were collected as participants walked at constant speed. The CESR foot demonstrated increased energy storage during early stance, increased prosthetic foot peak push-off power and work, increased prosthetic limb center of mass (COM) push-off work and decreased intact limb COM collision work compared to CONV and PRES. The biological contribution of the positive COM work for CESR was reduced compared to CONV and PRES. However, the net metabolic cost for CESR did not change compared to CONV and increased compared to PRES, which may partially reflect the greater weight, lack of individualized size and stiffness and relatively less familiarity for CESR and CONV. Controlled energy storage and return enhanced prosthetic push-off, but requires further design modifications to improve amputee walking economy.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号