首页> 美国卫生研究院文献>other >Aldehyde stress and up-regulation of Nrf2-mediated antioxidant systems accompany functional adaptations in cardiac mitochondria from mice fed n-3 polyunsaturated fatty acids
【2h】

Aldehyde stress and up-regulation of Nrf2-mediated antioxidant systems accompany functional adaptations in cardiac mitochondria from mice fed n-3 polyunsaturated fatty acids

机译:NRF2介导的抗氧化体系的醛胁迫和上调伴随着喂养N-3多不饱和脂肪酸的小鼠心脏线粒体的功能适应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Diets replete with n-3 poly-unsaturated fatty acids (n-3 PUFAs) are known to have therapeutic potential for the heart, although a specifically defined duration of n-3 PUFA diet required to achieve these effects remains unknown, as does their mechanism of action. This study was undertaken to establish whether adaptations in mitochondrial function and stress tolerance in the heart is evident following a short- (3 weeks) and long-term (14 weeks) dietary intervention of n-3 PUFAs, and to identify novel mechanisms by which these adaptations occur. Mitochondrial respiration (mO2), H2O2 emission (mH2O2) and Ca2+ retention capacity (mCa2+) were assessed in mouse hearts following dietary intervention. Mice fed n-3 PUFA’s for 14 weeks showed significantly lower mH2O2 and greater mCa2+ compared to all other groups. However, no significant differences were observed after 3 weeks of n-3 PUFA diet, or in mice fed a high fat diet devoid of n-3 PUFAs for 14 weeks. Interestingly, at 14 weeks n-3 PUFA mice had significantly greater glutathione reductase activity, reflected by a substantially higher GSH/GSSG ratio. Levels of protein adducts of 4-hydroxyhexenal, an aldehyde formed from peroxidation of n-3 PUFAs, were significantly elevated in n-3 PUFA fed mice, even at 3 weeks. These findings demonstrate distinct time-dependent effects of n-3 PUFAs on mitochondrial function and stress tolerance in the heart. In addition, they are first to provide direct evidence that increases in non-enzymatic lipid oxidation products precede these mitochondrial and redox-mediated adaptations, thereby revealing a novel mechanism for n-3 PUFA action in heart.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号