首页> 美国卫生研究院文献>other >Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models
【2h】

Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models

机译:矩形形状的自组装浓度编程和概率瓦片装配模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is Ω(log(n)log(log(n))) (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing Θ(log(n)log(log(n))) unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio (α:β), with high probability, using Θ(α + β) tiles. This result is much stronger than the existing results by and —which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling. This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP ’09, Springer-Verlag, pp 235–253, 2009), to self assemble rectangles (of fixed aspect ratio) with high probability. The tile complexity of our algorithm is Θ(log(n)) and is optimal on the probabilistic tile assembly model (PTAM)—n being an upper bound on the dimensions of a rectangle.
机译:用于自组装直线形状的高效瓷砖组在算法自组装中具有至关重要的重要性。对于n×n square的任何确定性自组装系统的磁砖复杂度的界限是 ω log n log log n (从Kolmogrov复杂度推断出来) 。具有最佳瓦片复杂性的确定性自组装系统已经为过去的平方根和相关形状而设计。但是设计 θ < MROW> log n log log < Mo Strangey =“假”>( n 特定于形状的独特瓷砖在实验室中仍然是一个密集的任务。另一方面,可以使用PCR(聚合酶链反应)实验来快速地进行瓷砖的副本。这导致了在瓷砖浓度编程模型上的自组装研究。我们在本文中提出了两种主要结果,浓缩编程模型。首先,我们展示了如何使用θ(α+β)瓦片具有高概率的固定宽高比(α:β)自组装矩形。该结果比现有结果强于现有结果,而且 - 只能自组装方块,依赖于执行二进制算法的瓷砖。另一方面,我们的结果基于一种称为阶梯采样的技术。该技术消除了对执行二进制算法的子块的需要,从而减少了渐近绑定中的常数,并消除了对近似帧()的需求。我们的第二个结果适用于等摩尔浓度编程模型上的阶梯采样(线性组件的瓦片复杂性。在:第36章国际古代自动化,语言和编程的程序:ICLEP '09的第一部分,Springer-Verlag,PP 235-253,PP 235-253, 2009),以具有高概率的自组装矩形(固定纵横比)。我们算法的瓦片复杂性是θ(log(n)),并且在概率瓦片装配模型(Ptam)上是最佳的,是矩形尺寸的上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号