首页> 美国卫生研究院文献>other >Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4
【2h】

Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4

机译:在TOpas和GEaNT4质子治疗剂量计算高效的体素导航

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A key task within all Monte Carlo particle transport codes is Navigation, the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the effciency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the latter with and without boundary skipping, a method where neighboring voxels with the same Hounsfield Unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study.All simulations were performed using TOPAS, a TOol for PArticle Simulations layered on top of Geant4. Runtime comparisons were performed on three distinct patient CT data sets: A head and neck, a liver, and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study.The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average run time ratio for G4PhantomParamererisation with and without boundary skipping for our heterogeneous data was = 0:97 : 1. The calculated dose distributions agreed with the reference distribution for all but the G4PhantomParamererisation with boundary skipping for the head and neck patient. Maximum memory usage ranged from 0.8 to 1.8 GB depending on the CT volume independent of parameterizations, except for the 15-19 times greater memory usage with the G4VPVparameterisation when using the option with higher simulation speed. The G4VNestedParameterisation was selected as the preferred choice for the patient geometries and treatment plans studied.
机译:所有蒙特卡罗粒子传输代码中的一个关键任务是导航,计算在每个颗粒步骤中确定颗粒可以留下的量,颗粒可以进入的体积。应优化导航到特定的几何图形。对于患者剂量计算,该几何形状通常涉及体曲化计算断层扫描(CT)数据。我们调查了导航算法对当前可用的Voxel几何参数化蒙特卡罗仿真包的效力4:G4VPVParameterisisation,G4VneStedParameterisisisisation,G4VnestedParameterisisisation,后者有和没有边界跳跃的方法,其中具有相同Hounsfield单元的相邻体素组合成一个更大的方法voxel。第四个参数化方法(MGHParameterization)在后面的两个参数中在Geant4中可用之前开发,也包括在本研究中。使用TOPAS进行仿真,是在GEANT4顶部层叠的粒子模拟工具。在三个不同的患者CT数据集中进行运行时比较:头部和颈部,肝脏和前列腺患者。我们包括这三名患者的额外版本,其中包括患者以外的空气体素,在运行时的研究中均匀地设定为水。G4VPVParameterisation提供两种优化选项。一个选项具有60-150倍较慢的仿真速度。另一个与速度兼容,但与其他参数化相比,内存更多的内存需要15-19倍。我们发现用于模拟相对于G4VnestedParametation的平均CPU时间为1.014,对于G4phantomparametation,没有边界跳跃,1.015用于MGHParameterization。 G4phantomparamereRistation的平均运行时间比与我们的异构数据的边界跳跃为= 0:97:1。计算的剂量分布与所有与颈部患者的边界跳过的G4phantomparamereation的参考分布商定。根据与参数化无关的CT音量,最大内存用法范围为0.8至1.8 GB,除了使用具有更高仿真速度的选项时,使用G4VPVParameteration更高的内存使用率为15-19倍。选择G4VnestedParameteration作为研究的患者几何形状和治疗计划的首选选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号