首页> 美国卫生研究院文献>other >Anisotropic Partial Volume CSF Modeling for EEG Source Localization
【2h】

Anisotropic Partial Volume CSF Modeling for EEG Source Localization

机译:EEG源定位的各向异性部分卷CSF模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electromagnetic source localization (ESL) provides non-invasive evaluation of brain electrical activity for neurology research and clinical evaluation of neurological disorders such as epilepsy. Accurate ESL results are dependent upon the use of patient-specific models of bioelectric conductivity. While the effects of anisotropic conductivities in the skull and white matter have been previously studied, little attention has been paid to the accurate modeling of the highly conductive cerebrospinal fluid (CSF) region.This study examines the effect that partial volume errors in CSF segmentations have upon the ESL bioelectric model. These errors arise when segmenting sulcal channels whose widths are similar to the resolution of the magnetic resonance (MR) images used for segmentation, as some voxels containing both CSF and grey matter cannot be definitively assigned a single label. These problems, particularly prevalent in pediatric populations, make voxelwise segmentation of CSF compartments a difficult problem. Given the high conductivity of CSF, errors in modeling this region my result in large errors in the bioelectric model.We introduce here a new approach for using estimates of partial volume fractions in the construction of patient specific bioelectric models. In regions where partial volume errors are expected, we use a layered gray matter-CSF model to construct equivalent anisotropic conductivity tensors. This allows us to account for the inhomogeneity of the tissue within each voxel. Using this approach, we are able to reduce the error in the resulting bioelectric models, as evaluated against a known high resolution model. Additionally, this model permits us to evaluate the effects of sulci modeling errors and quantify the mean error as a function of the change in sulci width.Our results suggest that both under and over-estimation of the CSF region leads to significant errors in the bioelectric model. While a model with fixed partial volume fraction is able to reduce this error, we see the largest improvement when using voxel specific partial volume estimates. Our cross-model analyses suggest that an approximately linear relationship exists between sulci error and the error in the resulting bioelectric model. Given the difficulty of accurately segmenting narrow sulcal channels, this suggests that our approach may be capable of improving the accuracy of patient specific bioelectric models by several percent, while introducing only minimal additional computational requirements.
机译:电磁源定位(ESL)为神经学研究的脑电活动提供了非侵入性评价,并对癫痫等神经系统疾病的临床评估。准确的ESL结果取决于使用生物电导率的患者特异性模型。虽然先前已经研究了颅骨和白物中各向异性导电性的影响,但是对高导电性脑脊液(CSF)区域的准确建模已经注意到了很少的注意。本研究检查了CSF分段中的部分体积误差的效果在ESL生物电模型上。当分割宽度与用于分割的磁共振(MR)图像的分辨率类似的硫通道时出现这些误差,因为不能明确地分配一个包含CSF和灰质物质的一些体素。这些问题,特别是儿科人群中普遍存在的问题,使CSF隔室的体素分割成为一个难题。鉴于CSF的高导电性,在对该区域建模时的误差我的生物电模型中的大误差。这里介绍了使用患者特定生物电模型构建中的部分体积分数估计的新方法。在预期部分体积误差的区域中,我们使用分层灰度-CSF模型来构建等效的各向异性电导率张量。这使我们能够考虑每个体素内的组织的不均匀性。使用这种方法,我们能够降低所得到的生物电模型中的误差,如针对已知高分辨率模型的评估。此外,该模型允许我们评估Sulci建模误差的影响,并将均值误差量化为Sulci宽度的变化。我们的结果表明CSF区域的下面和过度估计导致生物电的显着误差模型。虽然具有固定部分体积分数的模型能够减少此错误,但我们在使用体素特定的部分卷估计时,我们会看到最大的改进。我们的跨模型分析表明,Sulci误差与所得到的生物电模型中的误差之间存在大致线性关系。鉴于难以准确地分割窄硫通道,这表明我们的方法可能能够提高患者特定生物电模型的准确性,百分之几,同时仅引入最小的额外计算要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号