首页> 美国卫生研究院文献>other >Characterization of electron tunneling and hole hopping reactions between different forms of MauG and methylamine dehydrogenase within a natural protein complex
【2h】

Characterization of electron tunneling and hole hopping reactions between different forms of MauG and methylamine dehydrogenase within a natural protein complex

机译:电子隧道效应的表征和孔跳频天然蛋白质复合物内的不同形式的mauG和甲胺脱氢酶之间的反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Respiration, photosynthesis and metabolism require the transfer of electrons through and between proteins over relatively long distances. It is critical that this electron transfer (ET) occur with specificity to avoid cellular damage, and at a rate which is sufficient to support the biological activity. A multi-step hole hopping mechanism could, in principle, enhance the efficiency of long range ET through proteins as it does in organic semiconductors. To explore this possibility, two different ET reactions that occur over the same distance within the protein complex of the diheme enzyme MauG and different forms of methylamine dehydrogenase (MADH) were subjected to kinetic and thermodynamic analysis. An ET mechanism of single-step direct electron tunneling from diferrous MauG to the quinone form of MADH is consistent with the data. In contrast, the biosynthetic ET from preMADH, which contains incompletely synthesized tryptophan tryptophylquinone, to the bis-Fe(IV) form of MauG is best described by a two-step hole hopping mechanism. Experimentally-determined values of ET distance matched the distances determined from the crystal structure that would be expected for single-step tunneling and multi-step hopping, respectively. Experimentally-determined relative values of electronic coupling (HAB) for the two reactions correlated well with the relative HAB values predicted from computational analysis of the structure. The rate of the hopping-mediated ET reaction is also ten-fold greater than that of the single-step tunneling reaction despite having a smaller overall driving force for the reaction. These data provide insight into how the intervening protein matrix and redox potentials of the electron donor and acceptor determine whether the ET reaction proceeds via single-step tunneling or multi-step hopping.
机译:呼吸,光合作用和新陈代谢需要电子在相对长的距离内通过蛋白质和蛋白质之间进行转移。至关重要的是,这种电子转移(ET)的特异性要避免细胞损伤,并且其速率必须足以支持生物活性。原理上,多步空穴跳跃机制可以像有机半导体中那样通过蛋白质提高远程ET的效率。为了探索这种可能性,对在双血红素酶MauG的蛋白质复合体和不同形式的甲胺脱氢酶(MADH)的相同距离内发生的两个不同的ET反应进行了动力学和热力学分析。从二亚乙基MauG到MADH醌形式的单步直接电子隧穿的ET机制与数据一致。相反,通过两步空穴跳跃机制可以最好地描述从preMADH到生物合成的ET,其中包含不完全合成的色氨酸色氨酸醌,到双Fe(IV)形式的MauG。实验确定的ET距离值与从晶体结构确定的距离相匹配,分别是单步隧穿和多步跳跃所期望的。实验确定的两个反应的电子偶联(HAB)相对值与根据结构计算分析预测的相对HAB值很好相关。跳跃介导的ET反应的速率也比单步隧穿反应的速率高十倍,尽管该反应的总驱动力较小。这些数据提供了对电子施主和受体之间的蛋白质基质和氧化还原电势如何确定ET反应是通过单步隧穿还是多步跳跃进行的深入了解。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号