首页> 美国卫生研究院文献>other >Programmable Illumination and High-Speed Multi-Wavelength Confocal Microscopy Using a Digital Micromirror
【2h】

Programmable Illumination and High-Speed Multi-Wavelength Confocal Microscopy Using a Digital Micromirror

机译:可编程照明和高速多波长共聚焦显微镜使用数字微镜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor.
机译:共聚焦显微镜通常用于生物样品的高分辨率荧光成像。大多数标准共聚焦系统会在样品上扫描激光,并收集穿过单个针孔的发射光,以产生样品的光学截面。逐点顺序扫描限制了图像获取的速度,即使是最快的商业仪器也难以解决快速细胞事件(例如钙信号)的时间动态问题。已经引入了各种方法来提高共焦成像的速度。例如,Nipkov圆盘显微镜使用旋转磁盘上的针孔或狭缝阵列来实现平行扫描,从而显着提高了采集速度。在这里,我们报告了一种显微镜模块的开发,该显微镜模块利用数字微镜设备作为空间光调制器,以单个摄像机的高空间和轴向分辨率,以受摄像机帧速率限制的速度提供可编程的共焦光学切片。数字微镜充当固态Nipkov磁盘,但具有更改针孔大小和间距以及逐个镜像地控制光强度的附加功能。在发射路径中使用凹凸镜代替透镜,可以克服DMD设备固有的像散,提高了光收集效率并确保了图像收集是消色差的,从而使图像在不同波长下完美对齐。与非激光光源结合使用,可实现低成本,高速,多波长图像采集,而无需进行复杂的与波长相关的图像对准。微镜也可用于可编程照明,从而在空间上定义荧光蛋白的光活化。我们演示了使用单波长钙指示剂和遗传编码比例式钙传感器同时进行高速钙成像的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号