首页> 美国卫生研究院文献>other >Advancing practical usage of microtechnology: a study of the functional consequences of dielectrophoresis on neural stem cells
【2h】

Advancing practical usage of microtechnology: a study of the functional consequences of dielectrophoresis on neural stem cells

机译:推进微技术的实际用法:介电泳对神经干细胞功能后果的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The integration of microscale engineering, microfluidics, and AC electrokinetics such as dielectrophoresis has generated novel microsystems that enable quantitative analysis of cellular phenotype, function, and physiology. These systems are increasingly being used to assess diverse cell types, such as stem cells, so it becomes critical to thoroughly evaluate whether the systems themselves impact cell function. For example, engineered microsystems have been utilized to investigate neural stem/progenitor cells (NSPCs), which are of interest due to their potential to treat CNS disease and injury. Analysis by dielectrophoresis (DEP) microsystems determined that unlabeled NSPCs with distinct fate potential have previously unrecognized distinguishing electrophysiological characteristics, suggesting that NSPCs could be isolated by DEP microsystems without the use of cell type specific labels. To gauge the potential impact of DEP sorting on NSPCs, we investigated whether electric field exposure of varying times affected survival, proliferation, or fate potential of NSPCs in suspension. We found short-term DEP exposure (1 min or less) had no effect on NSPC survival, proliferation, or fate potential revealed by differentiation. Moreover, NSPC proliferation (measured by DNA synthesis and cell cycle kinetics) and fate potential were not altered by any length of DEP exposure (up to 30 min). However, lengthy exposure (> 5 min) to frequencies near the crossover frequency (50–100 kHz) led to decreased survival of NSPCs (maximum ~30% cell loss after 30 min). Based on experimental observations and mathematical simulations of cells in suspension, we find that frequencies near the crossover frequency generate an induced transmembrane potential that results in cell swelling and rupture. This is in contrast to the case for adherent cells since negative DEP frequencies lower than the crossover frequency generate the highest induced transmembrane potential and damage for these cells. We clarify contrasting effects of DEP on adherent and suspended cells, which are related to the cell position within the electric field and the strength of the electric field at specific distances from the electrodes. Modeling of electrode configurations predicts optimal designs to induce cell movement by DEP while limiting the induced transmembrane potential. We find DEP electric fields are not harmful to stem cells in suspension at short exposure times, thus providing a basis for developing DEP-based applications for stem cells.
机译:微型工程学,微流体学和交流电动力学(如介电泳)的集成产生了新颖的微系统,可以对细胞表型,功能和生理进行定量分析。这些系统越来越多地用于评估各种细胞类型,例如干细胞,因此全面评估系统本身是否影响细胞功能就变得至关重要。例如,工程微系统已被用于研究神经干/祖细胞(NSPC),由于其具有治疗中枢神经系统疾病和损伤的潜力,因此受到人们的关注。通过介电电泳(DEP)微系统分析确定,具有未定命运电位的未标记NSPC以前没有被识别的区分电生理特征,这表明可以通过DEP微系统分离NSPC,而无需使用细胞类型特异性标记。为了评估DEP分选对NSPC的潜在影响,我们调查了不同时间的电场暴露是否会影响悬浮状态下NSPC的存活,增殖或命运。我们发现短期DEP暴露(1分钟或更短)对分化所揭示的NSPC生存,增殖或命运潜能没有影响。此外,任何长度的DEP暴露(长达30分钟)都不会改变NSPC增殖(通过DNA合成和细胞周期动力学测定)和命运潜力。然而,长时间(> 5分钟)暴露在接近交叉频率(50–100 kHz)的频率下会导致NSPC存活率下降(30分钟后细胞损失最大〜30%)。基于实验观察和悬浮细胞的数学模拟,我们发现交叉频率附近的频率会产生感应的跨膜电位,从而导致细胞肿胀和破裂。这与贴壁细胞的情况相反,因为低于交越频率的负DEP频率会产生最高的跨膜电势,并对这些细胞造成损害。我们阐明了DEP对粘附细胞和悬浮细胞的对比作用,这与电场内的细胞位置以及距电极特定距离处的电场强度有关。电极构型的建模预测了最佳设计,以通过DEP诱导细胞运动,同时限制诱导的跨膜电位。我们发现DEP电场在短时间暴露对悬浮的干细胞无害,因此为开发基于DEP的干细胞应用提供了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号