首页> 美国卫生研究院文献>other >Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning
【2h】

Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning

机译:生物沙相互作用治理生态系统功能的后缺氧恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.
机译:缺氧是造成沿海水域生物多样性和生态系统功能丧失的主要原因之一。由于富营养化引起的缺氧事件变得越来越频繁和激烈,因此了解生态系统对缺氧的反应对于理解和预测生态系统功能的稳定性至关重要。这种生态稳定性可能在很大程度上取决于社区的恢复模式以及与这些模式相关的系统属性的返回时间。在这里,我们研究了底栖生物群落的重组如何在潮汐试验中通过实验诱导的低氧后恢复生态系统功能。我们证明,取决于沉积物大小和与流动性状和沉积物修复能力有关的沉积物与沉积物之间的相互作用通常比恢复物种丰富度来设置被测沉积物过程和性质的返回时间更为重要。具体而言,在群落重组期间大型动植物生物扰动潜力的增加,极大地促进了沉积物过程和特性的恢复,例如反硝化,床载沉积物迁移,初级生产和深孔水铵浓度。这种生物扰动的潜力是由于在早期阶段重新定殖的小型生物被大型生物扰动生物所替代,而大型生物扰动生物对沉积物的影响特别大。这项研究表明,生物体-沉积物相互作用的完全恢复是生态系统功能恢复的必要条件,并且由于幼体缓慢生长到参与这些相互作用的成年阶段,这种过程需要长时间的干扰。因此,以小于系统完全恢复生物-沉积物相互作用所需时间的时间间隔重复出现干扰事件,可能会大大削弱生态系统功能的复原力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号