首页> 美国卫生研究院文献>other >Microfluidic artificial vessels for dynamic mechanical stimulation of mesenchymal stem cells
【2h】

Microfluidic artificial vessels for dynamic mechanical stimulation of mesenchymal stem cells

机译:微流控人为的血管间充质干细胞的动态力学刺激

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cells in the cardiovascular system are constantly exposed to complex mechanical stimulation due to the pulsatile nature of blood flow and the haemodynamic forces that are key to the regulation of vascular development, remodeling and pathophysiology. Mechanical stretch can also modulate the differentiation of stem cells toward vascular cell lineages (i.e., vascular smooth muscle cells), and represent a critical factor in vascular tissue engineering. Here we report on the development of a microchip platform that can emulate several key aspects of the vascular mechanical environment, such as cyclic stimulation and circumferential strain. This chip consists of an array of microfluidic channels with widths ranging from 20 to 500 micrometers. These channels are covered by suspended deformable membranes, on which cells are cultured and stimulated by cyclic circumferential strain of up to 20% via hydrodynamic actuation of the fluid in the microfluidic channels, thereby mimicking the biomechanical conditions of small blood vessels. We show that human mesenchymal stem cells (MSCs) can be cultured and continuously stimulated by cyclic stretch over a period of 7 days with no evidence of device fatigue or performance degradation. We observed localization and alignment of MSCs when mechanical stretch is larger than 10%, indicating the importance of mechanical stimulation in modulating cellular behavior. We further demonstrated simultaneous detection of proteins in multiple signaling pathways, including SMAD1/SMAD2 and canonical Wnt/β-catenin. This microchip represents a generic and versatile platform for high-throughput and rapid screening of cellular responses, including signal transduction cascades, in response to mechanical cues. The system emulates the physiological conditions of blood vessels and other tissues that are subject to cyclic strain, and may have a wide range of applications in the fields of stem cell mechanobiology, vascular tissue engineering, and other areas of regenerative medicine.
机译:由于血流的搏动特性和对调节血管发育,重塑和病理生理至关重要的血流动力学力,心血管系统中的细胞不断受到复杂的机械刺激。机械拉伸还可调节干细胞向血管细胞谱系(即,血管平滑肌细胞)的分化,并且代表血管组织工程中的关键因素。在这里,我们报告微芯片平台的发展,该平台可以模拟血管机械环境的几个关键方面,例如循环刺激和圆周应变。该芯片由一系列微流体通道组成,其宽度范围为20至500微米。这些通道被悬浮的可变形膜覆盖,通过微流体通道中流体的流体动力致动,高达20%的循环圆周应变在细胞上进行培养和刺激,从而模仿了小血管的生物力学条件。我们显示,人类间充质干细胞(MSCs)可以被培养并在7天的周期内通过循环拉伸连续刺激,而没有任何设备疲劳或性能下降的迹象。我们观察到当机械拉伸大于10%时MSC的定位和排列,表明机械刺激在调节细胞行为中的重要性。我们进一步证明了同时检测多种信号途径中的蛋白质,包括SMAD1 / SMAD2和经典的Wnt /β-catenin。该微芯片代表了一种通用且通用的平台,用于高通量和快速筛选细胞反应(包括信号转导级联反应),以响应机械提示。该系统模拟经受周期性应变的血管和其他组织的生理状况,并且在干细胞力学生物学,血管组织工程和再生医学的其他领域中可能具有广泛的应用。

著录项

  • 期刊名称 other
  • 作者

    Jing Zhou; Laura E. Niklason;

  • 作者单位
  • 年(卷),期 -1(4),12
  • 年度 -1
  • 页码 1039/c2ib00171c
  • 总页数 19
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号