首页> 美国卫生研究院文献>other >Effect of S-nitrosoglutathione on renal mitochondrial function: a new mechanism for reversible regulation of manganese superoxide dismutase activity?
【2h】

Effect of S-nitrosoglutathione on renal mitochondrial function: a new mechanism for reversible regulation of manganese superoxide dismutase activity?

机译:S-Nitrosogluthione对肾线粒体功能的影响:锰超氧化物歧化酶可逆调控的新机制吗?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mitochondria are at the heart of all cellular processes as they provide the majority of the energy needed for various metabolic processes. Nitric oxide has been shown to have numerous roles in the regulation of mitochondrial function. Mitochondria have enormous pools of glutathione (GSH≈5–10 mM). Nitric oxide can react with glutathione to generate a physiological molecule, S-nitrosoglutathione (GSNO). The impact GSNO has on mitochondrial function has been intensively studied in recent years, and several mitochondrial electron transport chain complex proteins have been shown to be targeted by GSNO. In this study we investigated the effect of GSNO on mitochondrial function using normal rat proximal tubular kidney cells (NRK cells). GSNO treatment of NRK cells led to mitochondrial membrane depolarization and significant reduction in activities of mitochondrial complex IV and manganese superoxide dismutase enzyme (MnSOD). MnSOD is a critical endogenous antioxidant enzyme that scavenges excess superoxide radicals in the mitochondria. The decrease in MnSOD activity was not associated with a reduction in its protein levels and treatment of NRK cell lysate with dithiothreitol (a strong sulfhydryl-group-reducing agent) restored MnSOD activity to control values. GSNO is known to cause both S-nitrosylation and S-glutathionylation, which involve the addition of NO and GS groups, respectively, to protein sulfhydryl (SH) groups of cysteine residues. Endogenous GSH is an essential mediator in S-glutathionylation of cellular proteins, and the current studies revealed that GSH is required for MnSOD inactivation after GSNO or diamide treatment in rat kidney cells as well as in isolated kidneys. Further studies showed that GSNO led to glutathionylation of MnSOD; however, glutathionylated recombinant MnSOD was not inactivated. This suggests that a more complex pathway, possibly involving the participation of multiple proteins, leads to MnSOD inactivation after GSNO treatment. The major highlight of these studies is the fact that dithiothreitol can restore MnSOD activity after GSNO treatment. To our knowledge, this is the first study showing that MnSOD activity can be reversibly regulated in vivo, through a mechanism involving thiol residues.
机译:线粒体是所有细胞过程的核心,因为它们提供了各种代谢过程所需的大部分能量。一氧化氮已经显示出在线粒体功能调节中的许多作用。线粒体具有大量的谷胱甘肽(GSH≈5-10mM)。一氧化氮可与谷胱甘肽反应生成生理分子S-亚硝基谷胱甘肽(GSNO)。近年来,已经广泛研究了GSNO对线粒体功能的影响,并且已经显示了GSNO靶向多种线粒体电子传输链复合蛋白。在这项研究中,我们使用正常大鼠近端肾小管肾细胞(NRK细胞)研究了GSNO对线粒体功能的影响。 GSNO处理NRK细胞导致线粒体膜去极化,并显着降低线粒体复合物IV和锰超氧化物歧化酶(MnSOD)的活性。 MnSOD是一种重要的内源性抗氧化酶,可清除线粒体中的过量超氧化物自由基。 MnSOD活性的降低与蛋白质水平的降低无关,用二硫苏糖醇(一种强巯基还原剂)对NRK细胞裂解液的处理将MnSOD活性恢复到控制值。已知GSNO引起S-亚硝基化和S-谷胱甘肽化,这涉及分别向半胱氨酸残基的蛋白质巯基(SH)基团添加NO和GS基团。内源性GSH是细胞蛋白S-谷胱甘肽酰化的重要介体,目前的研究表明,GSNO是GSNO或二酰胺处理后大鼠肾细胞以及分离的肾脏中MnSOD失活所必需的。进一步的研究表明,GSNO导致MnSOD的谷胱甘肽化。然而,谷胱甘肽化的重组MnSOD没有被灭活。这表明更复杂的途径,可能涉及多种蛋白质的参与,导致GSNO处理后MnSOD失活。这些研究的主要亮点是二硫苏糖醇可以在GSNO处理后恢复MnSOD活性。据我们所知,这是第一项研究表明,MnSOD活性可以通过涉及硫醇残基的机制在体内被可逆调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号