首页> 美国卫生研究院文献>other >Catalytic Efficiency of Enzymes: A Theoretical Analysis
【2h】

Catalytic Efficiency of Enzymes: A Theoretical Analysis

机译:酶的催化效率:一个理论分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This brief review analyzes the underlying physical principles of enzyme catalysis, with an emphasis on the role of equilibrium enzyme motions and conformational sampling. The concepts are developed in the context of three representative systems, namely dihydrofolate reductase, ketosteroid isomerase, and soybean lipoxygenase. All of these reactions involve hydrogen transfer, but many of the concepts discussed are more generally applicable. The factors that are analyzed in this review include hydrogen tunneling, proton donor-acceptor motion, hydrogen bonding, pKa shifting, electrostatics, preorganization, reorganization, and conformational motions. The rate constant for the chemical step is determined primarily by the free energy barrier, which is related to the probability of sampling configurations conducive to the chemical reaction. According to this perspective, stochastic thermal motions lead to equilibrium conformational changes in the enzyme and ligands that result in configurations favorable to the breaking and forming of chemical bonds. For proton, hydride, and proton-coupled electron transfer reactions, typically the donor and acceptor become closer to facilitate the transfer. The impact of mutations on the catalytic rate constants can be explained in terms of the factors enumerated above. In particular, distal mutations can alter the conformational motions of the enzyme and therefore the probability of sampling configurations conducive to the chemical reaction. Methods such as vibrational Stark spectroscopy, in which environmentally sensitive probes are introduced site-specifically in the enzyme, provide further insight into these aspects of enzyme catalysis through a combination of experiments and theoretical calculations.
机译:本文简要分析了酶催化的基本物理原理,重点介绍了平衡酶运动和构象采样的作用。该概念是在三种代表性系统的背景下开发的,即二氢叶酸还原酶,酮固醇异构酶和大豆脂氧合酶。所有这些反应都涉及氢转移,但是所讨论的许多概念更普遍适用。在这篇综述中分析的因素包括氢隧穿,质子供体-受体运动,氢键,pKa位移,静电,预组织,重组和构象运动。化学步骤的速率常数主要由自由能垒确定,该自由能垒与有助于化学反应的采样配置的概率有关。根据该观点,随机热运动导致酶和配体的平衡构象变化,从而导致有利于化学键断裂和形成的构型。对于质子,氢化物和质子耦合的电子转移反应,通常供体和受体变得更靠近以促进转移。突变对催化速率常数的影响可以根据以上列举的因素来解释。特别地,远侧突变可以改变酶的构象运动,因此可以改变有利于化学反应的采样配置的可能性。诸如振动斯塔克光谱法等方法,其中将环境敏感的探针位点特异性地引入酶中,这些方法通过结合实验和理论计算,进一步了解了酶催化的这些方面。

著录项

  • 期刊名称 other
  • 作者

    Sharon Hammes-Schiffer;

  • 作者单位
  • 年(卷),期 -1(52),12
  • 年度 -1
  • 页码 1021/bi301515j
  • 总页数 19
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号