首页> 美国卫生研究院文献>other >Iron Content of Saccharomyces cerevisiae cells grown under Iron-Deficient and Iron-Overload Conditions
【2h】

Iron Content of Saccharomyces cerevisiae cells grown under Iron-Deficient and Iron-Overload Conditions

机译:在缺铁和铁过载条件下生长的酿酒酵母细胞中的铁含量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fermenting cells were grown under Fe-deficient and Fe-overload conditions, and their Fe contents were examined using biophysical spectroscopies. The high-affinity Fe import pathway was active only in Fe-deficient cells. Such cells contained ~150 μM Fe, distributed primarily into nonheme high-spin (NHHS) FeII species and mitochondrial Fe. Most NHHS FeII was not located in mitochondria, and their function is unknown. Mitochondria isolated from Fe-deficient cells contained [Fe4S4]2+ clusters, low- and high-spin hemes, S=½ [Fe2S2]1+ clusters, NHHS FeII species, and [Fe2S2]2+ clusters. The presence of [Fe2S2]2+ clusters was unprecedented; their presence in previous samples was obscured by the spectroscopic signature of FeIII nanoparticles which were absent in Fe-deficient cells. Whether Fe-deficient cells were grown under fermenting or respirofermenting conditions had no effect on Fe content; such cells prioritized their use of Fe to essential forms devoid of nanoparticles and vacuolar Fe. The majority of Mn ions in WT yeast cells was EPR-active MnII and not located in mitochondria or vacuoles. Fermenting cells grown on Fe-sufficient and Fe-overloaded medium contained 400 – 450 μM Fe. In these cells the concentration of nonmitochondrial NHHS FeII declined 3-fold, relative to in Fe-deficient cells, whereas the concentration of vacuolar NHHS FeIII increased to a limiting cellular concentration of ~ 300 μM. Isolated mitochondria contained more NHHS FeII ions and substantial amounts of FeIII nanoparticles. The Fe contents of cells grown with excessive Fe in the medium were similar over a 250-fold change of nutrient Fe levels. The ability to limit Fe import prevents cells from overloading with Fe.
机译:发酵细胞在铁缺乏和铁超载条件下生长,并使用生物物理光谱学检查其铁含量。高亲和力的Fe导入途径仅在Fe缺乏的细胞中才有活性。此类细胞含有约150μMFe,主要分布在非血红素高旋转(NHHS)Fe II 物种和线粒体Fe中。大多数NHHS Fe II 都不位于线粒体中,其功能尚不清楚。从缺铁细胞中分离出的线粒体包含[Fe4S4] 2 + 簇,低和高自旋血红素,S = 1/2 [Fe2S2] 1 + 簇,NHHS Fe < sup> II 物种和[Fe2S2] 2 + 簇。 [Fe2S2] 2 + 团簇的存在是前所未有的。缺铁细胞中不存在的Fe III 纳米粒子的光谱特征掩盖了它们在先前样品中的存在。缺铁细胞是否在发酵或呼吸发酵条件下生长对Fe含量没有影响;这类细胞将其使用铁的优先次序定为不含纳米颗粒和液泡铁的基本形式。 WT酵母细胞中的大多数Mn离子为EPR活性Mn II ,而不位于线粒体或液泡中。在含铁充足且铁超载的培养基上生长的发酵细胞含有400 – 450μM铁。在这些细胞中,非线粒体NHHS Fe II 的浓度相对于缺铁细胞降低了3倍,而液泡NHHS Fe III 的浓度增加至极限细胞浓度约为300μM。分离的线粒体含有更多的NHHS Fe II 离子和大量的Fe III 纳米颗粒。在营养铁水平变化250倍的情况下,培养基中铁过量时生长的细胞的铁含量相似。限制Fe导入的能力可防止细胞中的Fe超载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号