首页> 美国卫生研究院文献>other >Robust Fluoroscopic Tracking of Fiducial Markers: Exploiting the Spatial Constraints
【2h】

Robust Fluoroscopic Tracking of Fiducial Markers: Exploiting the Spatial Constraints

机译:基准标记的鲁棒荧光镜追踪:开拓的空间限制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two new fluoroscopic fiducial tracking methods that exploit the spatial relationship among the multiple implanted fiducial to achieve fast, accurate and robust tracking are proposed in this paper. The spatial relationship between multiple implanted markers are modeled as Gaussian distributions of their pairwise distances over time. The means and standard deviations of these distances are learned from training sequences, and pairwise distances that deviate from these learned distributions are assigned a low spatial matching score. The spatial constraints are incorporated in two different algorithms: a stochastic tracking method and a detection based method. In the stochastic method, hypotheses of the “true” fiducial position are sampled from a pre-trained respiration motion model. Each hypothesis is assigned an importance value based on image matching score and spatial matching score. Learning the parameters of the motion model is needed in addition to the learning the distribution parameters of the pairwise distances in the proposed stochastic tracking approach. In the detection based method, a set of possible marker locations are identified by using a template matching based fiducial detector. The best location is obtained by optimizing the image matching score and spatial matching score through non-serial dynamic programming. In this detection based approach, there is no need to learn the respiration motion model. The two proposed algorithms are compared with a recent work using multiple hypothesis tracking algorithm which is denoted by >MHT[]. Phantom experiments were performed using fluoroscopic videos captured with known motion relative to an anthropomorphic phantom. The patient experiments were performed using a retrospective study of 16 fluoroscopic videos of liver cancer patients with implanted fiducials. For the motion phantom data sets, the detection based approach has the smallest tracking error (μerr: 0.78 – 1.74 mm, σerr: 0.39 – 1.16 mm) for the images taken at low exposure (50 mAs). At higher exposure (500 mAs), the stochastic method gave the best performance (μerr:~ 0.39 mm, σerr:~ 0.27 mm). In contrast, the tracker (>MHT) that does not model the spatial constraints only performs well when there is no occluded fiducial. With the RANDO phantom data, both of our proposed methods performed well and have the mean tracking errors around ~ 1.8 mm with the standard deviations ~ 0.93 mm at 100 mAs and ~ 0.91 mm with 0.88 mm standard deviation at 500 mAs. The >MHT tracker has the largest tracking errors with mean ~ 4.8 mm) and standard deviation ~ 2.4 mm in both sessions with the Rondo phantom data. On the patient data sets, the detection based method gave the smallest error (μerr: 0.39 mm, σerr: ~ 0.19 mm). The stochastic method performed well (μerr: ~ 0.58 mm, σerr: ~ 0.39 mm) when the patient breathed consistently, the accuracy dropped to (μerr: ~ 1.55 mm) when the patient breathed differently across sessions.
机译:本文提出了两种新的透视基准跟踪方法,它们利用多次植入的基准之间的空间关系来实现快速,准确和鲁棒的跟踪。将多个植入标记之间的空间关系建模为它们的成对距离随时间的高斯分布。这些距离的均值和标准差可从训练序列中获悉,并且偏离这些获知分布的成对距离将被分配一个较低的空间匹配分数。空间约束被并入两种不同的算法中:随机跟踪方法和基于检测的方法。在随机方法中,从预先训练的呼吸运动模型中采样“真实”基准位置的假设。根据图像匹配分数和空间匹配分数,为每个假设分配一个重要性值。除了学习所提出的随机跟踪方法中的成对距离的分布参数之外,还需要学习运动模型的参数。在基于检测的方法中,通过使用基于模板匹配的基准检测器来识别一组可能的标记位置。通过非串行动态编程优化图像匹配分数和空间匹配分数,可以获得最佳位置。在这种基于检测的方法中,无需学习呼吸运动模型。将所提出的两个算法与使用多重假设跟踪算法(> MHT [])的最新工作进行了比较。使用相对于拟人化幻影以已知运动捕获的透视视频进行幻影实验。使用回顾性研究对16例植入了基准的肝癌患者的X线透视视频进行了患者实验。对于运动体模数据集,基于检测的方法对于低曝光(50 mAs)拍摄的图像具有最小的跟踪误差(μerr:0.78 – 1.74 mm,σerr:0.39 – 1.16 mm)。在较高的曝光量(500 mAs)下,随机方法具有最佳性能(μerr:〜0.39 mm,σerr:〜0.27 mm)。相反,未对空间约束进行建模的跟踪器(> MHT )仅在没有基准被遮挡的情况下才能很好地运行。利用RANDO幻象数据,我们提出的两种方法均表现良好,并且在100 mAs时的平均跟踪误差约为1.8 mm,标准偏差为〜0.93 mm,在500 mAs时的平均跟踪误差为0.91 mm,标准偏差为0.88 mm。在使用Rondo幻象数据的两个会话中,> MHT 跟踪器的跟踪误差最大,均值约为4.8毫米,标准偏差约为2.4毫米。在患者数据集上,基于检测的方法给出的误差最小(μerr:0.39 mm,σerr:〜0.19 mm)。当患者持续呼吸时,随机方法的效果很好(μerr:〜0.58 mm,σerr:〜0.39 mm),而当患者在整个过程中进行不同的呼吸时,准确性降低至(μerr:〜1.55 mm)。

著录项

  • 期刊名称 other
  • 作者

    Rui Li; Gregory Sharp;

  • 作者单位
  • 年(卷),期 -1(58),6
  • 年度 -1
  • 页码 1789–1808
  • 总页数 30
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号