首页> 美国卫生研究院文献>other >Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation
【2h】

Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation

机译:并行TCSPC用于动态玻璃体内荧光寿命成像:量化神经炎症中的神经元功能障碍。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two-photon laser-scanning microscopy has revolutionized our view on vital processes by revealing motility and interaction patterns of various cell subsets in hardly accessible organs (e.g. brain) in living animals. However, current technology is still insufficient to elucidate the mechanisms of organ dysfunction as a prerequisite for developing new therapeutic strategies, since it renders only sparse information about the molecular basis of cellular response within tissues in health and disease. In the context of imaging, Förster resonant energy transfer (FRET) is one of the most adequate tools to probe molecular mechanisms of cell function. As a calibration-free technique, fluorescence lifetime imaging (FLIM) is superior for quantifying FRET in vivo. Currently, its main limitation is the acquisition speed in the context of deep-tissue 3D and 4D imaging. Here we present a parallelized time-correlated single-photon counting point detector (p-TCSPC) (i) for dynamic single-beam scanning FLIM of large 3D areas on the range of hundreds of milliseconds relevant in the context of immune-induced pathologies as well as (ii) for ultrafast 2D FLIM in the range of tens of milliseconds, a scale relevant for cell physiology. We demonstrate its power in dynamic deep-tissue intravital imaging, as compared to multi-beam scanning time-gated FLIM suitable for fast data acquisition and compared to highly sensitive single-channel TCSPC adequate to detect low fluorescence signals. Using p-TCSPC, 256×256 pixel FLIM maps (300×300 µm2) are acquired within 468 ms while 131×131 pixel FLIM maps (75×75 µm2) can be acquired every 82 ms in 115 µm depth in the spinal cord of CerTN L15 mice. The CerTN L15 mice express a FRET-based Ca-biosensor in certain neuronal subsets. Our new technology allows us to perform time-lapse 3D intravital FLIM (4D FLIM) in the brain stem of CerTN L15 mice affected by experimental autoimmune encephalomyelitis and, thereby, to truly quantify neuronal dysfunction in neuroinflammation.
机译:两光子激光扫描显微镜揭示了活体动物难以接近的器官(例如大脑)中各种细胞亚群的运动性和相互作用模式,从而彻底改变了我们对重要过程的看法。然而,当前的技术仍不足以阐明器官功能障碍的机制作为开发新的治疗策略的先决条件,因为它仅提供了有关健康和疾病组织中细胞反应分子基础的稀疏信息。在成像方面,福斯特共振能量转移(FRET)是探测细胞功能分子机制的最合适工具之一。作为一种无需校准的技术,荧光寿命成像(FLIM)在体内定量FRET方面具有优势。当前,其主要限制是在深组织3D和4D成像中的采集速度。在这里,我们提出了一种并行的时间相关单光子计数点检测器(p-TCSPC)(i),用于在免疫诱导的病理情况下,在数百毫秒的范围内对大3D区域进行动态单束扫描FLIM。以及(ii)数十毫秒范围内的超快2D FLIM(与细胞生理相关的标度)。我们证明了其在动态深层组织活体内成像中的功能,与适用于快速数据采集的多光束扫描时控FLIM以及与足以检测低荧光信号的高灵敏度单通道TCSPC相比,具有很高的竞争力。使用p-TCSPC,可在468毫秒内获取256×256像素FLIM映射(300×300 µm 2 ),而131×131像素FLIM映射(75×75 µm 2 )可在CerTN L15小鼠的脊髓中以115 µm的深度每82 ms捕获一次。 CerTN L15小鼠在某些神经元亚群中表达基于FRET的Ca生物传感器。我们的新技术使我们能够在受实验性自身免疫性脑脊髓炎影响的CerTN L15小鼠的脑干中进行延时3D活体FLIM(4D FLIM),从而真正量化神经炎中的神经元功能障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号