首页> 美国卫生研究院文献>Frontiers in Plant Science >Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering
【2h】

Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering

机译:通过基因工程促进植物体内维生素B1生物强化的研究策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thiamin (vitamin B1) is made by plants and microorganisms but is an essential micronutrient in the human diet. All organisms require it as a cofactor in its form as thiamin pyrophosphate (TPP) for the activity of key enzymes of central metabolism. In humans, deficiency is widespread particularly in populations where polished rice is a major component of the diet. Considerable progress has been made on the elucidation of the biosynthesis pathway within the last few years enabling concrete strategies for biofortification purposes to be devised, with a particular focus here on genetic engineering. Furthermore, the vitamin has been shown to play a role in both abiotic and biotic stress responses. The precursors for de novo biosynthesis of thiamin differ between microorganisms and plants. Bacteria use intermediates derived from purine and isoprenoid biosynthesis, whereas the pathway in yeast involves the use of compounds from the vitamin B3 and B6 groups. Plants on the other hand use a combination of the bacterial and yeast pathways and there is subcellular partitioning of the biosynthesis steps. Specifically, thiamin biosynthesis occurs in the chloroplast of plants through the separate formation of the pyrimidine and thiazole moieties, which are then coupled to form thiamin monophosphate (TMP). Phosphorylation of thiamin to form TPP occurs in the cytosol. Therefore, thiamin (or TMP) must be exported from the chloroplast to the cytosol for the latter step to be executed. The regulation of biosynthesis is mediated through riboswitches, where binding of the product TPP to the pre-mRNA of a biosynthetic gene modulates expression. Here we examine and hypothesize on genetic engineering approaches attempting to increase the thiamin content employing knowledge gained with the model plant Arabidopsis thaliana. We will discuss the regulatory steps that need to be taken into consideration and can be used a prerequisite for devising such strategies in crop plants.
机译:硫胺素(维生素B1)是由植物和微生物制成的,但它是人类饮食中必不可少的微量营养素。所有生物都需要它作为硫胺焦磷酸盐(TPP)形式的辅助因子,以实现中枢新陈代谢的关键酶的活性。在人类中,缺乏症普遍存在,特别是在精米是饮食主要成分的人群中。在过去的几年中,在阐明生物合成途径方面已经取得了相当大的进展,从而可以设计出用于生物强化目的的具体策略,其中特别关注基因工程。此外,已显示维生素在非生物和生物应激反应中均起作用。微生物和植物之间从头进行硫胺素生物合成的前体不同。细菌使用源自嘌呤和类异戊二烯生物合成的中间体,而酵母中的途径涉及使用维生素B3和B6组的化合物。另一方面,植物利用细菌和酵母途径的组合,并且生物合成步骤存在亚细胞分配。具体地说,硫胺素的生物合成是通过分别形成嘧啶和噻唑部分而在植物的叶绿体中发生的,然后将它们耦合形成硫胺素单磷酸酯(TMP)。硫胺素的磷酸化形成TPP发生在细胞质中。因此,硫胺素(或TMP)必须从叶绿体输出到细胞质中才能进行后面的步骤。生物合成的调节是通过核糖开关介导的,其中产物TPP与生物合成基因的前mRNA的结合调节表达。在这里,我们利用基因植物拟南芥中获得的知识,对试图增加硫胺素含量的基因工程方法进行了检验和假设。我们将讨论需要考虑的监管步骤,这些步骤可以用作在作物中制定此类策略的先决条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号