首页> 美国卫生研究院文献>other >Vibration Induced Osteogenic Commitment of Mesenchymal Stem Cells is Enhanced by Cytoskeletal Remodeling but not Fluid Shear
【2h】

Vibration Induced Osteogenic Commitment of Mesenchymal Stem Cells is Enhanced by Cytoskeletal Remodeling but not Fluid Shear

机译:细胞骨架重塑增强了间充质干细胞振动诱导的成骨作用但流体剪切作用不增强

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Consistent across studies in humans, animals and cells, the application of vibrations can be anabolic and/or anti-catabolic to bone. The physical mechanisms modulating the vibration-induced response have not been identified. Recently, we developed an in vitro model in which candidate parameters including acceleration magnitude and fluid shear can be controlled independently during vibrations. Here, we hypothesized that vibration induced fluid shear does not modulate mesenchymal stem cell (MSC) proliferation and mineralization and that cell’s sensitivity to vibrations can be promoted via actin stress fiber formation. Adipose derived human MSCs were subjected to vibration frequencies and acceleration magnitudes that induced fluid shear stress ranging from 0.04Pa to 5Pa. Vibrations were applied at magnitudes of 0.15g, 1g, and 2g using frequencies of both 100Hz and 30Hz. After 14d and under low fluid shear conditions associated with 100Hz oscillations, mineralization was greater in all vibrated groups than in controls. Greater levels of fluid shear produced by 30Hz vibrations enhanced mineralization only in the 2g group. Over 3d, vibrations led to the greatest increase in total cell number with the frequency/acceleration combination that induced the smallest level of fluid shear. Acute experiments showed that actin remodeling was necessary for early mechanical up-regulation of RUNX-2 mRNA levels. During osteogenic differentiation, mechanically induced up-regulation of actin remodeling genes including Wiskott-Aldrich syndrome (WAS) protein, a critical regulator of Arp2/3 complex, was related to the magnitude of the applied acceleration but not to fluid shear. These data demonstrate that fluid shear does not regulate vibration induced proliferation and mineralization and that cytoskeletal remodeling activity may play a role in MSC mechanosensitivity.
机译:在人类,动物和细胞的各种研究中,振动的应用可能对骨骼具有同化和/或抗分解代谢作用。还没有确定调节振动引起的响应的物理机制。最近,我们开发了一种体外模型,其中可以在振动过程中独立控制包括加速幅度和流体剪切力在内的候选参数。在这里,我们假设振动引起的流体剪切不会调节间充质干细胞(MSC)的增殖和矿化作用,而细胞对振动的敏感性可以通过肌动蛋白应力纤维的形成来增强。源自脂肪的人类MSC受到的振动频率和加速度大小引起的流体切应力范围为0.04Pa至5Pa。使用100Hz和30Hz的频率分别施加0.15g,1g和2g的振动。 14天后,在与100Hz振荡相关的低流体剪切条件下,所有振动组的矿化度均高于对照组。仅在2g组中,由30Hz振动产生的更高水平的流体剪切作用会增强矿化作用。在超过3d的时间内,振动导致总细胞数的最大增加,频率/加速度组合导致了最小的流体剪切力。急性实验表明肌动蛋白重塑对于RUNX-2 mRNA水平的早期机械上调是必需的。在成骨分化过程中,肌动蛋白重塑基因(包括Wiskott-Aldrich综合征(WAS)蛋白,Arp2 / 3复合物的关键调节剂)的机械诱导上调与所施加的加速度大小有关,而与流体剪切无关。这些数据表明,流体剪切不能调节振动诱导的增殖和矿化,并且细胞骨架重塑活性可能在MSC机械敏感性中起作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号