首页> 美国卫生研究院文献>other >Toward optimized potential functions for protein-protein interactions in aqueous solutions: osmotic second virial coefficient calculations using the MARTINI coarse-grained force field
【2h】

Toward optimized potential functions for protein-protein interactions in aqueous solutions: osmotic second virial coefficient calculations using the MARTINI coarse-grained force field

机译:寻求水溶液中蛋白质相互作用的最佳潜在功能:使用MARTINI粗粒力场的渗透第二维里系数计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Coarse-grained (CG) simulation methods are now widely used to model the structure and dynamics of large biomolecular systems. One important issue for using such methods – especially with regard to using them to model, for example, intracellular environments – is to demonstrate that they can reproduce experimental data on the thermodynamics of protein-protein interactions in aqueous solutions. To examine this issue, we describe here simulations performed using the popular coarse-grained MARTINI force field, aimed at computing the thermodynamics of lysozyme and chymotrypsinogen self-interactions in aqueous solution. Using molecular dynamics simulations to compute potentials of mean force between a pair of protein molecules, we show that the original parameterization of the MARTINI force field is likely to significantly overestimate the strength of protein-protein interactions to the extent that the computed osmotic second virial coefficients are orders of magnitude more negative than experimental estimates. We then show that a simple down-scaling of the van der Waals parameters that describe the interactions between protein pseudo-atoms can bring the simulated thermodynamics into much closer agreement with experiment. Overall, the work shows that it is feasible to test explicit-solvent CG force fields directly against thermodynamic data for proteins in aqueous solutions, and highlights the potential usefulness of osmotic second virial coefficient measurements for fully parameterizing such force fields.
机译:粗粒度(CG)模拟方法现已广泛用于对大型生物分子系统的结构和动力学进行建模。使用此类方法的一个重要问题,尤其是在使用它们进行建模(例如在细胞内环境中建模)方面,要证明它们可以重现水溶液中蛋白质相互作用的热力学实验数据。为了研究这个问题,我们在这里描述了使用流行的粗粒度MARTINI力场进行的模拟,目的是计算水溶液中溶菌酶和胰凝乳蛋白酶原自相互作用的热力学。使用分子动力学模拟来计算一对蛋白质分子之间的平均力的潜力,我们表明,MARTINI力场的原始参数化可能会大大高估蛋白质-蛋白质相互作用的强度,其程度是计算出的渗透第二病毒系数比实验估计值要大几个数量级。然后我们表明,描述蛋白质伪原子之间相互作用的范德华参数的简单缩减可以使模拟的热力学与实验更加接近。总的来说,这项工作表明直接针对水溶液中蛋白质的热力学数据测试显式溶剂CG力场是可行的,并强调了渗透第二维里系数测量对于完全参数化这种力场的潜在实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号