首页> 美国卫生研究院文献>other >Charge-Tunable Silk-Tropoelastin Protein Alloys That Control Neuron Cell Responses
【2h】

Charge-Tunable Silk-Tropoelastin Protein Alloys That Control Neuron Cell Responses

机译:电荷可调节的丝-弹性蛋白蛋白合金可控制神经元细胞反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tunable protein composites are important for constructing extracellular matrix mimics of human tissues with control of biochemical, structural, and mechanical properties. Molecular interaction mechanisms between silk fibroin protein and recombinant human tropoelastin, based on charge, are utilized to generate a new group of multifunctional protein alloys (mixtures of silk and tropoelastin) with different net charges. These new biomaterials are then utilized as a biomaterial platform to control neuron cell response. With a +38 net charge in water, tropoelastin molecules provide extraordinary elasticity and selective interactions with cell surface integrins. In contrast, negatively charged silk fibroin protein (net charge −36) provides remarkable toughness and stiffness with morphologic stability in material formats via autoclaving-induced beta-sheet crystal physical crosslinks. The combination of these properties in alloy format extends the versatility of both structural proteins, providing a new biomaterial platform. The alloys with weak positive charges (silk/tropoelastin mass ratio 75/25, net charge around +16) significantly improved the formation of neuronal networks and maintained cell viability of rat cortical neurons after 10 days in vitro. The data point to these protein alloys as an alternative to commonly used poly-L-lysine (PLL) coatings or other charged synthetic polymers, particularly with regard to the versatility of material formats (e.g., gels, sponges, films, fibers). The results also provide a practical example of physically designed protein materials with control of net charge to direct biological outcomes, in this case for neuronal tissue engineering.
机译:可调节的蛋白质复合物对于构建具有控制生物化学,结构和机械特性的人体组织的细胞外基质模拟物非常重要。丝素蛋白与重组人原弹性蛋白之间的分子相互作用机理基于电荷,可用于产生一组净电荷不同的新的多功能蛋白质合金(蚕丝和原弹性蛋白的混合物)。这些新的生物材料随后被用作控制神经元细胞反应的生物材料平台。水中的原弹性蛋白分子在水中的净电荷为+38,可提供非凡的弹性以及与细胞表面整联蛋白的选择性相互作用。相反,带负电的丝素蛋白蛋白(净电荷-36)通过高压灭菌诱导的β-折叠晶体物理交联,在材料形式方面提供了显着的韧性和刚度以及形态稳定性。合金形式的这些特性的组合扩展了两种结构蛋白的多功能性,提供了新的生物材料平台。具有弱正电荷的合金(丝/弹性蛋白的质量比为75/25,净电荷为+16左右)可显着改善神经元网络的形成,并在体外培养10天后保持大鼠皮质神经元的细胞活力。数据表明这些蛋白质合金可以替代常用的聚L-赖氨酸(PLL)涂层或其他带电的合成聚合物,尤其是在材料形式(例如凝胶,海绵,薄膜,纤维)的多功能性方面。结果还提供了物理设计的蛋白质材料的实际例子,该蛋白质材料具有控制净电荷以指导生物学结果的能力,在这种情况下是神经元组织工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号